دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Alex Khang, Vugar Abdullayev, Babasaheb Jadhav, Shashi Gupta, Gilbert Morris سری: ISBN (شابک) : 9781032497082, 9781003400110 ناشر: CRC Press سال نشر: 2023 تعداد صفحات: 396 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 30 Mb
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب AI-Centric Modeling and Analytics; Concepts, Technologies, and Applications به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب مدلسازی و تجزیه و تحلیل هوش مصنوعی؛ مفاهیم، فناوری ها و کاربردها نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Cover Half Title Title Copyright Contents Preface Acknowledgments Editors Contributors Chapter 1 Artificial Intelligence-Based Model and Applications in Business Decision-Making 1.1 Introduction 1.2 Literature Survey 1.3 Artificial Intelligence-Centric Business Models 1.4 Tools for Supporting Business Decision-Making 1.4.1 Artificial Intelligence-Centric Tools for Supporting Business Decision-Making 1.4.2 ChatGPT for Business Decision-Making 1.4.3 Example (Case Study) for Business Decision-Making 1.5 Conclusion References Chapter 2 Exploration of Machine Learning Models for Business Ecosystem 2.1 Introduction 2.2 Machine Learning in Industry 4.0 2.2.1 Machine Learning Models 2.2.2 Technology Features of Machine Learning for Industry 4.0 2.2.3 Challenges in Industry 4.0 Using Machine Learning 2.3 Literature Survey 2.4 Machine Learning Framework for Business Ecosystem 2.5 Performance Analysis of Machine Learning Models 2.6 Conclusion References Chapter 3 The Role of Big Data and Data Analysis Tools in Business and Production 3.1 Introduction 3.2 Definition of Big Data 3.2.1 Managing Big Data 3.2.2 Data Use Cases 3.3 Big Data Process Life Cycle 3.3.1 Data Ingestion 3.3.2 Data Storage 3.3.3 Data Processing 3.3.4 Data Analysis 3.3.5 Big Data Analytics 3.3.6 Data Visualization 3.4 Conclusion References Chapter 4 Revolutionized Teaching by Incorporating Artificial Intelligence Chatbot for Higher Education Ecosystem 4.1 Introduction 4.2 Related Work 4.2.1 Student Engagement 4.2.2 Chatbots and Language Learning 4.3 Methods 4.4 Results and Discussion 4.4.1 Student Engagement in Incorporating Artificial Intelligence Chatbots 4.4.2 Discussion 4.5 Conclusion References Chapter 5 Application of Artificial Intelligence in AgroWeb 5.1 Introduction 5.2 Related Work 5.3 Pre-Harvesting 5.3.1 Crop Prediction 5.3.2 Model Selection for Crop Prediction 5.3.3 Seed Prediction 5.3.4 Crop Disease Prediction 5.3.5 Irrigation System 5.3.6 Irrigation System Model 5.4 Conclusion 5.5 Recommendation References Chapter 6 Natural Language Processing: A Study of State of the Art 6.1 Introduction 6.2 Text Pre-Processing and Vector-Based Models 6.3 Text Pre-Processing Techniques 6.3.1 Term Frequency–Inverse Document Frequency 6.3.2 Term Frequency Matrix 6.4 Natural Language Processing: Text Similarity and Semantic Analysis 6.4.1 Euclidian Distance 6.4.2 Dot Product 6.4.3 Cosine Similarity 6.5 Semantic Analysis 6.6 Probability Models in Natural Language Processing 6.6.1 Hidden Markov Model 6.6.2 Language Models 6.7 Machine Learning Methods for Natural Language Processing 6.7.1 Spam Detection–Naive Bayes 6.7.2 Sentiment Analysis–Logistic Regression 6.7.3 Latent Semantic Analysis–Singular Value Decomposition 6.7.4 Topic Modeling–Latent Dirichlet Allocation 6.8 Deep Learning Methods 6.8.1 Multilayer Perceptron 6.8.2 Convolutional Neural Network 6.8.3 Recurrent Neural Network 6.9 Conclusion References Chapter 7 Application of Artificial Intelligence in Healthcare System Management with Dynamic Modeling of COVID-19 Diagnosis 7.1 Introduction 7.2 Nomenclature 7.3 Mathematical Assumptions 7.4 Mathematical Model (SEIQR) 7.4.1 Model Analysis for Boundedness and Positivity 7.4.2 Calculation of Basic Reproduction Number 7.5 Existence of Equilibrium Points of the System of Equations 7.5.1 Coronavirus-Free Equilibrium Point 7.5.2 Stability Analysis of the Endemic Equilibrium 7.5.3 Global Stability of the Endemic Equilibrium 7.6 Results and Discussion 7.7 Conclusion References Chapter 8 Breast Cancer Prediction Using Voting Classifier Model 8.1 Introduction 8.1.1 Problem 8.1.2 Requirement for Our System 8.2 Literature Review 8.3 Methodology 8.3.1 Implementing Environment 8.3.2 Dataset Analysis and Pre-Processing 8.4 Proposed Work 8.5 Analysis and Comparison 8.6 Conclusion References Chapter 9 Privacy Protection for Internet of Medical Things Data Using Effective Outsourced Support Vector Machine Approach 9.1 Introduction 9.1.1 Big Data 9.1.2 Privacy-Preserving Data 9.1.3 Internet of Medical Things 9.1.4 Machine Learning in Internet of Medical Things 9.2 Literature Review 9.2.1 Data Mining 9.2.2 Machine Learning 9.3 System Design 9.4 Results and Discussion 9.5 Conclusion References Chapter 10 Robotics in Real-Time Applications Using Bayesian Hyper-Tuned Artificial Neural Network 10.1 Introduction 10.2 Problem Statement 10.3 Proposed Work 10.3.1 Data Collection 10.3.2 Pre-Processing Using Min-Max Normalization 10.3.3 Feature Extraction Using Kernel Linear Discriminant Analysis 10.3.4 Feature Detection Using Bayesian Hyper-Tuned Artificial Neural Network 10.4 Performance Evaluation 10.4.1 Security 10.4.2 Sensing Level 10.4.3 Robustness 10.4.4 Implementation Cost 10.5 Conclusion References Chapter 11 Quantitative Study on Variation of Glaucoma Eye Images Using Various EfficientNetV2 Models 11.1 Introduction 11.2 Literature Survey 11.3 Technical Approach 11.3.1 Dataset Description 11.3.2 EfficientNetV2 Models 11.4 Why EfficientNetV2? 11.4.1 EfficientNetV2B0 11.4.2 EfficientNetV2B1 11.4.3 EfficientNetV2B2 11.4.4 EfficientNetV2B3 11.4.5 EfficientNetV2S 11.4.6 EfficientNetV2M 11.4.7 EfficientNetV2L 11.4.8 EfficientNetV2XL 11.5 Hyper-Parameters Used 11.5.1 Adam (Optimizer) 11.5.2 Sigmoid (Activation Function) 11.6 Proposed Methodology 11.7 Implementation and Results 11.7.1 Evaluation of a Model Using Classification Metrics 11.7.2 Evaluation of Models Using Confusion Matrix 11.8 Conclusion References Chapter 12 Disaster Management System for Forest Fire Prediction: Fog and Cloud Data-Driven Analytical Compatible Model 12.1 Introduction 12.2 Related Work 12.3 Discussion and Results 12.3.1 Data Acquisition Layer 12.3.2 Fog Layer 12.3.3 Cloud Layer 12.4 Performance Analysis and Results 12.5 Implementation 12.6 Conclusion References Chapter 13 Hybrid Particle Swarm Optimization with Random Forest Algorithm Used in Job Scheduling to Improve Business and Production 13.1 Introduction 13.1.1 Job Scheduling 13.1.2 Data Cleaning 13.1.3 Machine Learning 13.1.4 Big Data Analysis 13.1.5 Particle Swarm Optimization 13.1.6 Random Forest 13.2 Literature Review 13.3 System Design 13.3.1 Particle Swarm Optimization for Data in Feature Selection 13.3.2 Training Data 13.3.3 Testing Data 13.3.4 Verification Step 13.3.5 Particle Swarm Optimization Algorithm 13.3.6 RF in Classification Algorithm 13.4 Results and Discussion 13.5 Conclusion References Chapter 14 Robotic Process Automation Applications in Data Management 14.1 Introduction 14.1.1 Robotic Process Automation Tools and Techniques 14.1.2 Relation of Robotic Process Automation with Artificial Intelligence Processes 14.2 Robotic Process Automation in Data Management 14.2.1 Robotic Process Automation Application in Data Cleansing 14.2.2 Robotic Process Automation Application in Data Normalization 14.2.3 How Is Robotic Process Automation Used in Data Wrangling? 14.2.4 Robotic Process Automation Application Management of Metadata 14.2.5 Variations of Robotic Process Automation 14.3 What Makes Robotic Process Automation So Special? 14.3.1 Business Process Automation 14.3.2 Business Process Management 14.3.3 Business Process Outsourcing 14.3.4 Advantages of Robotic Process Automation 14.4 Robotic Process Automation Learning with Cloud 14.4.1 Public Cloud 14.4.2 Private Cloud 14.4.3 Hybrid Cloud 14.5 Generally Used Robotic Process Automation Tools 14.5.1 Blue Prism 14.5.2 UiPath 14.5.3 Automation Anywhere 14.5.4 Kofax Kapow 14.5.5 Neptune Intelligence Computer Engineering 14.5.6 Key Differences between the Best Robotic Process Automation Tools 14.6 Robotic Process Automation in Business Data Management 14.7 Robotic Process Automation Use Cases in Business Data Management 14.7.1 How Customer Support Management Use Robotic Process Automation 14.7.2 Natural Language Use in Business Data Processing with Robotic Process Automation 14.8 Conclusion References Chapter 15 Artificial Intelligence-Enabled Bibliometric Analysis in Tourism and Hospitality Using Biblioshiny and VOSviewer Software 15.1 Introduction 15.2 Artificial Intelligence/Machine Learning 15.3 Methodology 15.4 Related Work 15.4.1 Analysis and Visualization of Data 15.4.2 Main Information about the Study 15.4.3 Emergence of Sources and Citation Analysis 15.4.4 Keyword Analysis 15.4.5 Analysis Based on Structures of Knowledge 15.5 Results and Discussion 15.5.1 Objective 1: To Investigate the Research Trend, Cluster Research, and the Evolution of Recent Research Domains in Tourism and the Hospitality Industry 15.5.2 Objective 2: To Investigate the Scientific Production by Countries 15.5.3 Objective 3: To Investigate the Scientific Production by Authors 15.5.4 Objective 4: To Investigate the Scientific Production by Institutions 15.5.5 Objective 5: To Investigate the Scientific Collaboration of the Countries 15.5.6 Objective 6: To Investigate Scientific Production by Sources and Dissemination by Sources 15.5.7 Objective 7: To Investigate the Content Based on the Author’s Keywords, KeyWords Plus, Titles, and Abstracts 15.5.8 Objective 8: To Investigate the Content Based on Citations (Most Cited References) 15.5.9 Objective 9: To Investigate the Less Researched Keywords Based on Centrality and Density 15.6 Conclusion 15.7 Limitations 15.8 Further Research References Chapter 16 Data-Centric Predictive Analytics for Solving Environmental Problems 16.1 Introduction 16.2 Materials and Methods 16.3 Discussion and Results 16.3.1. Exponential Decay and Logistic Models for Removal of Phenol 16.3.2. Results for the Logistic Model 16.4 Conclusion References Chapter 17 Phishing Attack and Defense: An Exploratory Data Analytics of Uniform Resource Locators for Cybersecurity 17.1 Introduction 17.1.1 Background 17.1.2 Methodology 17.1.3 Chapter Organization 17.2 Related Work 17.3 Proposed Methodology 17.3.1 Data Acquisition 17.3.2 Exploratory Data Analysis 17.3.3 Predictive Analytics of Uniform Resource Locators 17.4 Results 17.5 Conclusion 17.6 Recommendation References Chapter 18 Analysis of Deep Learning-Based Approaches for Spam Bots and Cyberbullying Detection in Online Social Networks 18.1 Introduction 18.1.1 SPAM 18.1.2 Spam Bot Detection Methods 18.1.3 Cyberbullying 18.1.4 Types of Cyberbullying 18.1.5 Cyberbullying Detection Methods 18.2 Proposed Methodology 18.2.1 Research Queries 18.2.2 Search Strategy 18.2.3 Study Choice 18.2.4 Quality Valuation Tools 18.3 Performance Metrics for Spam Bot and Cyberbullying Detection 18.3.1 Accuracy and Average Accuracy 18.3.2 Precision and Average Precision 18.3.3 Recall and Average Recall 18.3.4 F-Measure 18.3.5 G-Measure 18.3.6 Specificity and Average Specificity 18.4 Spam Bot Detection in Online Social Network Using Deep Learning 18.4.1 Social Media Bots 18.4.2 Spam Bot Detection in X/Twitter Using Deep Learning 18.4.3 Cyberbullying Detection in Online Social Network Using Deep Learning 18.5 Research Gap Analysis 18.6 Outcome of Literature Survey 18.7 Conclusion 18.8 Future Scope References Index