دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Fei Hu. Xiali Hei
سری:
ISBN (شابک) : 2022055385, 9781032034058
ناشر: CRC Press
سال نشر: 2023
تعداد صفحات: 346
[347]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 41 Mb
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب AI, Machine Learning and Deep Learning: A Security Perspective به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب هوش مصنوعی، یادگیری ماشین و یادگیری عمیق: دیدگاه امنیتی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Cover Half Title Title Page Copyright Page Table of Contents Preface About the Editors Contributors Part I Secure AI/ML Systems: Attack Models 1 Machine Learning Attack Models 1.1 Introduction 1.2 Background 1.2.1 Notation 1.2.2 Support Vector Machines 1.2.3 Neural Networks 1.3 White-Box Adversarial Attacks 1.3.1 L-BGFS Attack 1.3.2 Fast Gradient Sign Method 1.3.3 Basic Iterative Method 1.3.4 DeepFool 1.3.5 Fast Adaptive Boundary Attack 1.3.6 Carlini and Wagner’s Attack 1.3.7 Shadow Attack 1.3.8 Wasserstein Attack 1.4 Black-Box Adversarial Attacks 1.4.1 Transfer Attack 1.4.2 Score-Based Black-Box Attacks ZOO Attack Square Attack 1.4.3 Decision-Based Attack Boundary Attack HopSkipJump Attack Spatial Transformation Attack 1.5 Data Poisoning Attacks 1.5.1 Label Flipping Attacks 1.5.2 Clean Label Data Poisoning Attack Feature Collision Attack Convex Polytope Attack and Bullseye Polytope Attack 1.5.3 Backdoor Attack 1.6 Conclusions Acknowledgment Note References 2 Adversarial Machine Learning: A New Threat Paradigm for Next-Generation Wireless Communications 2.1 Introduction 2.1.1 Scope and Background 2.2 Adversarial Machine Learning 2.3 Challenges and Gaps 2.3.1 Development Environment 2.3.2 Training and Test Datasets 2.3.3 Repeatability, Hyperparameter Optimization, and Explainability 2.3.4 Embedded Implementation 2.4 Conclusions and Recommendations References 3 Threat of Adversarial Attacks to Deep Learning: A Survey 3.1 Introduction 3.2 Categories of Attacks 3.2.1 White-Box Attacks FGSM-based Method JSMA-based Method 3.2.2 Black-Box Attacks Mobility-based Approach Gradient Estimation-Based Approach 3.3 Attacks Overview 3.3.1 Attacks On Computer-Vision-Based Applications 3.3.2 Attacks On Natural Language Processing Applications 3.3.3 Attacks On Data Poisoning Applications 3.4 Specific Attacks In The Real World 3.4.1 Attacks On Natural Language Processing 3.4.2 Attacks Using Data Poisoning 3.5 Discussions and Open Issues 3.6 Conclusions References 4 Attack Models for Collaborative Deep Learning 4.1 Introduction 4.2 Background 4.2.1 Deep Learning (DL) Convolution Neural Network 4.2.2 Collaborative Deep Learning (CDL) Architecture Collaborative Deep Learning Workflow 4.2.3 Deep Learning Security and Collaborative Deep Learning Security 4.3 Auror: An Automated Defense 4.3.1 Problem Setting 4.3.2 Threat Model Targeted Poisoning Attacks 4.3.3 AUROR Defense 4.3.4 Evaluation 4.4 A New CDL Attack: Gan Attack 4.4.1 Generative Adversarial Network (GAN) 4.4.2 GAN Attack Main Protocol 4.4.3 Experiment Setups Dataset System Architecture Hyperparameter Setup 4.4.4 Evaluation 4.5 Defend Against Gan Attack In IoT 4.5.1 Threat Model 4.5.2 Defense System 4.5.3 Main Protocols 4.5.4 Evaluation 4.6 Conclusions Acknowledgment References 5 Attacks On Deep Reinforcement Learning Systems: A Tutorial 5.1 Introduction 5.2 Characterizing Attacks on DRL Systems 5.3 Adversarial Attacks 5.4 Policy Induction Attacks 5.5 Conclusions and Future Directions References 6 Trust and Security of Deep Reinforcement Learning 6.1 Introduction 6.2 Deep Reinforcement Learning Overview 6.2.1 Markov Decision Process 6.2.2 Value-Based Methods V-value Function Q-value Function Advantage Function Bellman Equation 6.2.3 Policy-Based Methods 6.2.4 Actor–Critic Methods 6.2.5 Deep Reinforcement Learning 6.3 The Most Recent Reviews 6.3.1 Adversarial Attack On Machine Learning 6.3.1.1 Evasion Attack 6.3.1.2 Poisoning Attack 6.3.2 Adversarial Attack On Deep Learning 6.3.2.1 Evasion Attack 6.3.2.2 Poisoning Attack 6.3.3 Adversarial Deep Reinforcement Learning 6.4 Attacks On DRL Systems 6.4.1 Attacks On Environment 6.4.2 Attacks On States 6.4.3 Attacks On Policy Function 6.4.4 Attacks On Reward Function 6.5 Defenses Against DRL System Attacks 6.5.1 Adversarial Training 6.5.2 Robust Learning 6.5.3 Adversarial Detection 6.6 Robust DRL Systems 6.6.1 Secure Cloud Platform 6.6.2 Robust DRL Modules 6.7 A Scenario of Financial Stability 6.7.1 Automatic Algorithm Trading Systems 6.8 Conclusion and Future Work References 7 IoT Threat Modeling Using Bayesian Networks 7.1 Background 7.2 Topics of Chapter 7.3 Scope 7.4 Cyber Security In IoT Networks 7.4.1 Smart Home 7.4.2 Attack Graphs 7.5 Modeling With Bayesian Networks 7.5.1 Graph Theory 7.5.2 Probabilities and Distributions 7.5.3 Bayesian Networks 7.5.4 Parameter Learning 7.5.5 Inference 7.6 Model Implementation 7.6.1 Network Structure 7.6.2 Attack Simulation Selection Probabilities Vulnerability Probabilities Based On CVSS Scores Attack Simulation Algorithm 7.6.3 Network Parametrization 7.6.4 Results 7.7 Conclusions and Future Work References Part II Secure AI/ML Systems: Defenses 8 Survey of Machine Learning Defense Strategies 8.1 Introduction 8.2 Security Threats 8.3 Honeypot Defense 8.4 Poisoned Data Defense 8.5 Mixup Inference Against Adversarial Attacks 8.6 Cyber-Physical Techniques 8.7 Information Fusion Defense 8.8 Conclusions and Future Directions References 9 Defenses Against Deep Learning Attacks 9.1 Introduction 9.2 Categories of Defenses 9.2.1 Modified Training Or Modified Input Data Preprocessing Data Augmentation 9.2.2 Modifying Networks Architecture Network Distillation Model Regularization 9.2.3 Network Add-On Defense Against Universal Perturbations MegNet Model 9.4 Discussions and Open Issues 9.5 Conclusions References 10 Defensive Schemes for Cyber Security of Deep Reinforcement Learning 10.1 Introduction 10.2 Background 10.2.1 Model-Free RL 10.2.2 Deep Reinforcement Learning 10.2.3 Security of DRL 10.3 Certificated Verification For Adversarial Examples 10.3.1 Robustness Certification 10.3.2 System Architecture 10.3.3 Experimental Results 10.4 Robustness On Adversarial State Observations 10.4.1 State-Adversarial DRL for Deterministic Policies: DDPG 10.4.2 State-Adversarial DRL for Q-Learning: DQN 10.4.3 Experimental Results 10.5 Conclusion And Challenges Acknowledgment References 11 Adversarial Attacks On Machine Learning Models in Cyber- Physical Systems 11.1 Introduction 11.2 Support Vector Machine (SVM) Under Evasion Attacks 11.2.1 Adversary Model 11.2.2 Attack Scenarios 11.2.3 Attack Strategy 11.3 SVM Under Causality Availability Attack 11.4 Adversarial Label Contamination on SVM 11.4.1 Random Label Flips 11.4.2 Adversarial Label Flips 11.5 Conclusions References 12 Federated Learning and Blockchain:: An Opportunity for Artificial Intelligence With Data Regulation 12.1 Introduction 12.2 Data Security And Federated Learning 12.3 Federated Learning Context 12.3.1 Type of Federation 12.3.1.1 Model-Centric Federated Learning 12.3.1.2 Data-Centric Federated Learning 12.3.2 Techniques 12.3.2.1 Horizontal Federated Learning 12.3.2.2 Vertical Federated Learning 12.4 Challenges 12.4.1 Trade-Off Between Efficiency and Privacy 12.4.2 Communication Bottlenecks 12.4.3 Poisoning 12.5 Opportunities 12.5.1 Leveraging Blockchain 12.6 Use Case: Leveraging Privacy, Integrity, And Availability For Data-Centric Federated Learning Using A Blockchain-Based Approach 12.6.1 Results 12.7 Conclusion References Part III Using AI/ML Algorithms for Cyber Security 13 Using Machine Learning for Cyber Security: Overview 13.1 Introduction 13.2 Is Artificial Intelligence Enough To Stop Cyber Crime? 13.3 Corporations’ Use Of Machine Learning To Strengthen Their Cyber Security Systems 13.4 Cyber Attack/Cyber Security Threats And Attacks 13.4.1 Malware 13.4.2 Data Breach 13.4.3 Structured Query Language Injection (SQL-I) 13.4.4 Cross-Site Scripting (XSS) 13.4.5 Denial-Of-Service (DOS) Attack 13.4.6 Insider Threats 13.4.7 Birthday Attack 13.4.8 Network Intrusions 13.4.9 Impersonation Attacks 13.4.10 DDoS Attacks Detection On Online Systems 13.5 Different Machine Learning Techniques In Cyber Security 13.5.1 Support Vector Machine (SVM) 13.5.2 K-Nearest Neighbor (KNN) 13.5.3 Naïve Bayes 13.5.4 Decision Tree 13.5.5 Random Forest (RF) 13.5.6 Multilayer Perceptron (MLP) 13.6 Application Of Machine Learning 13.6.1 ML in Aviation Industry 13.6.2 Cyber ML Under Cyber Security Monitoring 13.6.3 Battery Energy Storage System (BESS) Cyber Attack Mitigation 13.6.4 Energy-Based Cyber Attack Detection in Large-Scale Smart Grids 13.6.5 IDS for Internet of Vehicles (IoV) 13.7 Deep Learning Techniques In Cyber Security 13.7.1 Deep Auto-Encoder 13.7.2 Convolutional Neural Networks (CNN) 13.7.3 Recurrent Neural Networks (RNNs) 13.7.4 Deep Neural Networks (DNNs) 13.7.5 Generative Adversarial Networks (GANs) 13.7.6 Restricted Boltzmann Machine (RBM) 13.7.7 Deep Belief Network (DBN) 13.8 Applications Of Deep Learning In Cyber Security 13.8.1 Keystroke Analysis 13.8.2 Secure Communication in IoT 13.8.3 Botnet Detection 13.8.4 Intrusion Detection and Prevention Systems (IDS/IPS) 13.8.5 Malware Detection in Android 13.8.6 Cyber Security Datasets 13.8.7 Evaluation Metrics 13.9 CONCLUSION References 14 Performance of Machine Learning and Big Data Analytics Paradigms in Cyber Security 14.1 Introduction 14.1.1 Background On Cyber Security and Machine Learning 14.1.2 Background Perspectives to Big Data Analytics and Cyber Security 14.1.3 Supervised Learning Algorithms 14.1.4 Statement of the Problem 14.1.5 Purpose of Study 14.1.6 Research Objectives 14.1.7 Research Questions 14.2 LITERATURE REVIEW 14.2.1 Overview 14.2.2 Classical Machine Learning (CML) 14.2.2.1 Logistic Regression (LR) 14.2.2.2 Naïve Bayes (NB) 14.2.2.3 Decision Tree (DT) 14.2.2.4 K-Nearest Neighbor (KNN) 14.2.2.5 AdaBoost (AB) 14.2.2.6 Random Forest (RF) 14.2.2.7 Support Vector Machine (SVM) 14.2.3 Modern Machine Learning 14.2.3.1 Deep Neural Network (DNN) 14.2.3.2 Future of AI in the Fight Against Cyber Crimes 14.2.4 Big Data Analytics and Cyber Security 14.2.4.1 Big Data Analytics Issues 14.2.4.2 Independent Variable: Big Data Analytics 14.2.4.3 Intermediating Variables 14.2.4.4 Conceptual Framework 14.2.4.5 Theoretical Framework 14.2.4.6 Big Data Analytics Application to Cyber Security 14.2.4.7 Big Data Analytics and Cyber Security Limitations 14.2.4.8 Limitations 14.2.5 Advances in Cloud Computing 14.2.5.1 Explaining Cloud Computing and How It Has Evolved to Date 14.2.6 Cloud Characteristics 14.2.7 Cloud Computing Service Models 14.2.7.1 Software as a Service (SaaS) 14.2.7.2 Platform as a Service (PaaS) 14.2.7.3 Infrastructure as a Service (IaaS) 14.2.8 Cloud Deployment Models 14.2.8.1 Private Cloud 14.2.8.2 Public Cloud 14.2.8.3 Hybrid Cloud 14.2.8.4 Community Cloud 14.2.8.5 Advantages and Disadvantages of Cloud Computing 14.2.8.6 Six Main Characteristics of Cloud Computing and How They Are Leveraged 14.2.8.7 Some Advantages of Network Function Virtualization 14.2.8.8 Virtualization and Containerization Compared and Contrasted 14.3 Research Methodology 14.3.1 Presentation of the Methodology 14.3.1.1 Research Approach and Philosophy 14.3.1.2 Research Design and Methods 14.3.2 Population and Sampling 14.3.2.1 Population 14.3.2.2 Sample 14.3.3 Sources and Types of Data 14.3.4 Model for Analysis 14.3.4.1 Big Data 14.3.4.2 Big Data Analytics 14.3.4.3 Insights for Action 14.3.4.4 Predictive Analytics 14.3.5 Validity and Reliability 14.3.6 Summary of Research Methodology 14.3.7 Possible Outcomes 14.4 Analysis And Research Outcomes 14.4.1 Overview 14.4.2 Support Vector Machine 14.4.3 KNN Algorithm 14.4.4 Multilinear Discriminant Analysis (LDA) 14.4.5 Random Forest Classifier 14.4.6 Variable Importance 14.4.7 Model Results 14.4.8 Classification and Regression Trees (CART) 14.4.9 Support Vector Machine 14.4.10 Linear Discriminant Algorithm 14.4.11 K-Nearest Neighbor 14.4.12 Random Forest 14.4.13 Challenges and Future Direction 14.4.13.1 Model 1: Experimental/Prototype Model 14.4.13.2 Model 2: Cloud Computing/Outsourcing 14.4.13.3 Application of Big Data Analytics Models in Cyber Security 14.4.13.4 Summary of Analysis 14.5 Conclusion References 15 Using ML and DL Algorithms for Intrusion Detection in the Industrial Internet of Things 15.1 Introduction 15.2 IDS Applications 15.2.1 Random Forest Classifier 15.2.2 Pearson Correlation Coefficient 15.2.3 Related Works 15.3 Use Of ML And DL Algorithms In IIOT Applications 15.4 Practical Application of ML Algorithms In IIOT 15.4.1 Results 15.5 Conclusion References Part IV Applications 16 On Detecting Interest Flooding Attacks in Named Data Networking (NDN)–based IoT Searches 16.1 Introduction 16.2 PRELIMINARIES 16.2.1 Named Data Networking (NDN) 16.2.2 Internet of Things Search Engine (IoTSE) 16.2.3 Machine Learning (ML) 16.3 Machine Learning Assisted For NDN-Based IFA Detection In IOTSE 16.3.1 Attack Model 16.3.2 Attack Scale 16.3.3 Attack Scenarios 16.3.4 Machine Learning (ML) Detection Models 16.4 Performance Evaluation 16.4.1 Methodology 16.4.2 IFA Performance 16.4.2.1 Simple Tree Topology (Small Scale) 16.4.2.2 Rocketfuel ISP Like Topology (Large Scale) 16.4.3 Data Processing for Detection 16.4.4 Detection Results 16.4.4.1 ML Detection Performance in Simple Tree Topology 16.4.4.2 ML Detection in Rocketful ISP Topology 16.5 Discussion 16.6 Related Works 16.7 Final Remarks Acknowledgment References 17 Attack On Fraud Detection Systems in Online Banking Using Generative Adversarial Networks 17.1 Introduction 17.1.1 Problem of Fraud Detection in Banking 17.1.2 Fraud Detection and Prevention System 17.2 Experiment Description 17.2.1 Research Goal 17.2.2 Empirical Data 17.2.3 Attack Scenario 17.3 Generator And Discrimination Model 17.3.1 Model Construction 17.3.1.1 Imitation Fraud Detection System Model 17.3.1.2 Generator Models 17.3.2 Evaluation of Models 17.4 Final Conclusions and Recommendations Notes References 18 Artificial Intelligence-Assisted Security Analysis of Smart Healthcare Systems 18.1 Introduction 18.2 Smart Healthcare System (SHS) 18.2.1 Formal Modeling of SHS 18.2.2 Machine Learning (ML)–based Patient Status Classification Module (PSCM) in SHS 18.2.2.1 Decision Tree (DT) 18.2.2.2 Logistic Regression (LR) 18.2.2.3 Neural Network (NN) 18.2.3 Hyperparameter Optimization of PSCM in SHS 18.2.3.1 Whale Optimization (WO) 18.2.3.2 Grey Wolf Optimization (GWO) 18.2.3.3 Firefly Optimization (FO) 18.2.3.4 Evaluation Results 18.3 Formal Attack Modeling of SHS 18.3.1 Attacks in SHS 18.3.2 Attacker’s Knowledge 18.3.3 Attacker’s Capability 18.3.4 Attacker’s Accessibility 18.3.5 Attacker’s Goal 18.4 Anomaly Detection Models (ADMS) In SHS 18.4.1 ML-Based Anomaly Detection Model (ADM) in SHS 18.4.1.1 Density-Based Spatial Clustering of Applications With Noise (DBSCAN) 18.4.1.2 K-Means 18.4.1.3 One-Class SVM (OCSVM) 18.4.1.4 Autoencoder (AE) 18.4.2 Ensemble-Based ADMs in SHS 18.4.2.1 Data Collection and Preprocessing 18.4.2.2 Model Training 18.4.2.3 Threshold Calculation 18.4.2.4 Anomaly Detection 18.4.2.5 Example Case Studies 18.4.2.6 Evaluation Result 18.4.2.7 Hyperparameter Optimization of ADMs in SHS 18.5 Formal Attack Analysis of Smart Healthcare Systems 18.5.1 Example Case Studies 18.5.2 Performance With Respect to Attacker Capability 18.5.3 Frequency of Sensors in the Attack Vectors 18.5.4 Scalability Analysis 18.6 Resiliency Analysis Of Smart Healthcare System 18.7 Conclusion and Future Works References 19 A User-Centric Focus for Detecting Phishing Emails 19.1 Introduction 19.2 Background and Related Work 19.2.1 Behavioral Models Related to Phishing Susceptibility 19.2.2 User-Centric Antiphishing Measures 19.2.3 Technical Antiphishing Measures 19.2.4 Research Gap 19.3 The Dataset 19.4 Understanding The Decision Behavior Of Machine Learning Models 19.4.1 Interpreter for Machine Learning Algorithms 19.4.2 Local Interpretable Model-Agnostic Explanations (LIME) 19.4.3 Anchor Explanations 19.4.3.1 Share of Emails in the Data for Which the Rule Holds 19.5 Designing the Artifact 19.5.1 Background 19.5.2 Identifying Suspected Phishing Attempts 19.5.3 Cues in Phishing Emails 19.5.4 Extracting Cues 19.5.5 Examples of the Application of XAI for Extracting Cues and Phrases 19.6 Conclusion and Future Works 19.6.1 Completion of the Artifact Notes References