دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Kuldeep Bauddh. Ying Ma
سری:
ISBN (شابک) : 0128234431, 9780128234433
ناشر: Elsevier
سال نشر: 2022
تعداد صفحات: 522
[523]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 9 Mb
در صورت تبدیل فایل کتاب Advances in Microbe-assisted Phytoremediation of Polluted Sites به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب پیشرفت در گیاه پالایی سایت های آلوده به کمک میکروب نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
پیشرفتها در گیاه پالایی مکانهای آلوده به کمک میکروب یک نمای کلی از استفاده از گیاهپالایی برای پاکسازی زمینهای آلوده از طریق گیاه پالایی تقویتشده میکروبی، از جمله استفاده از گیاهان با توجه به محیطزیست و محیطزیست ارائه میدهد. علم محیط زیست این کتاب پتانسیل پاکسازی گیاهی به کمک میکروبی از آلاینده ها، از جمله فلزات سنگین، آفت کش ها، هیدروکربن های پلی آروماتیک و غیره را با مطالعات موردی به عنوان مثال مورد بحث قرار می دهد. موضوعات کلیدی تحت پوشش عبارتند از: تعامل گیاه و میکروب در اکوسیستم های آلوده، گیاه پالایی با میکروب برای بهبود خدمات اکوسیستم، و داستان های موفقیت در گیاه پالایی سایت های آلوده به کمک میکروب.
با افزایش تقاضا برای فضای زمین برای استفاده اجتماعی، صنعتی و کشاورزی، میلیونها هکتار از سایتهای آلوده در سراسر جهان بهشدت منبعی هستند که در حال حاضر نمیتوان از آن استفاده کرد. . ضد آلودگی این زمین با استفاده از روشهای سازگار با محیط زیست نه تنها برای استفاده از زمین، بلکه در پیشگیری از مواد سمی که اکوسیستمهای محلی را با کاهش بهرهوری و آلوده کردن زنجیره غذایی تخریب میکنند - که در نهایت میتواند در زنجیرههای غذایی تجمیع شده و خطر بالقوه غیرمجاز را به همراه داشته باشد، بسیار مهم است. -بیماری های قابل درمان برای انسان مانند سرطان.
Advances in Microbe-assisted Phytoremediation of Polluted Sites provides a comprehensive overview of the use of phytoremediation to decontaminate polluted land through microbial enhanced phytoremediation, including the use of plants with respect to ecological and environmental science. The book discusses the potential of microbial-assisted phytoremediation of the contaminant, including heavy metals, pesticides, polyaromatic hydrocarbons, etc., with case studies as examples. Key subjects covered include plant-microbe interaction in contaminated ecosystems, microbe-augmented phytoremediation for improved ecosystem services, and success stories on microbe-assisted phytoremediation of contaminated sites.
With increasing demand for land-space for social, industrial and agricultural use, the theoretical millions of hectares of contaminated sites around the world are a resource sorely needed that currently cannot be utilized. Decontamination of this land using ecologically-sound methods is paramount not only to land use, but in the prevention of toxic substances deteriorating local ecosystems by reducing productivity and contaminating the food chain – which can eventually aggregate in food chains and pose the potential risk of non-curable diseases to humans such as cancer.
Copyright Contents Contributors PART 1 - Overview of microbe-assisted phytoremediation Chapter 1 - Microbe-assisted phytoremediation of environmental contaminants 1.1 Introduction 1.2 Environmental contaminants: Types, nature, and sources 1.3 Impact of environmental contaminants on the environment and human health 1.4 Plant-microbe association/interaction and its role in phytoremediation of environmental contaminants 1.4.1 Phytoremediation of organic and inorganic contaminants 1.4.2 Phytoremediation of wastewater 1.4.3 Role of constructed wetlands in treatment of wastewaters 1.5 Mechanisms involved in the phytoremediation of environmental contaminants 1.5.1 Phytostabilization 1.5.2 Phytovolatilization 1.5.3 Phytodegradation 1.5.4 Phytoaccumulation 1.5.5 Phytoextraction 1.5.6 Rhizoremediation 1.5.6.1 Plant growth promoting rhizobacteria (PGPR) 1.5.6.2 Arbuscular mycorrhizal fungi 1.6 Economic importance of microbe assisted phytoremediation of environmental contaminants 1.7 Conclusion References Chapter 2 - Microbial augmented phytoremediation with improved ecosystems services 2.1 Introduction 2.2 Concept of phytoremediation 2.3 Need of augmentation of substances in phytoremediation 2.3.1 Chemical augmentation 2.3.2 Biological augmentation 2.4 Role of microbes in soil ecosystem 2.4.1 Nutrient bioavailability in the soil 2.4.2 Contaminant bioavailability in the soil 2.4.3 Stress tolerance 2.4.3.1 Role of microbes in plants tolerance to drought 2.4.3.2 Role of microbes in plants tolerance to salinity stress 2.4.3.3 Role of microbes in plants tolerance to temperature stress 2.4.4 Biocontrol of pathogens 2.4.5 Microbes enhances overall plant growth 2.5 Mechanism of microbe-assisted phytoremediation 2.6 Conclusion and future recommendation References Chapter 3 - Role of genetic engineering in microbe-assisted phytoremediation of polluted sites 3.1 Introduction 3.2 Microbe-assisted phytoremediation 3.2.1 Mechanism of phytoremediation using microorganism 3.2.1.1 Direct mechanism 3.2.1.2 Indirect mechanism 3.2.2 Advantages of microbe-assisted phytoremediation 3.3 Genetic engineering of microbes for assisting phytoremediation 3.3.1 Plant growth-promoting bacteria 3.3.2 Rhizospheric bacteria 3.3.3 Endophytic bacteria 3.4 Genetic engineering of plants for microbe-assisted phytoremediation 3.4.1 Engineering plants to enhance growth 3.4.2 Rhizosphere competence 3.4.3 Examining effects of the root targeted modification 3.5 Conclusions and future prospects Acknowledgments References PART 2 - Microbe-assisted phytoremediation of inorganic contaminants Chapter 4 - Phytoremediation potential of genetically modified plants 4.1 Introduction 4.2 Heavy metal contamination 4.3 Technologies used in the remediation of HMs 4.3.1 Excavation 4.3.2 Composting 4.3.3 Electrokinetic remediation (EKR) 4.3.4 Bioreactors 4.4 Phytoremediation 4.5 Factors affecting phytoremediation 4.6 Advantages and disadvantages of phytoremediation 4.7 Role of genetic engineering in phytoremediation 4.8 Conclusion and future prospects References chapter 5 - The role of bacteria in metal bioaccumulation and biosorption 5.1 Introduction 5.2 Microbial bioremediation 5.2.1 Biosorption 5.2.1.1 Extracellular adsorption 5.2.1.2 Cell surface adsorption 5.2.2 Bioaccumulation 5.3 Mechanisms underlying microbial metal biosorption and bioaccumulation 5.3.1 Extracellular adsorption 5.3.2 Cell surface adsorption or complexation 5.3.2.1 Ion exchange mechanism 5.3.2.2 Surface complex mechanism 5.3.2.3 Bioaccumulation/Intracellular adsorption 5.4 Main factors influencing the bioaccumulation efficiency 5.4.1 pH 5.4.2 Temperature 5.4.3 The presence of other metal ions 5.4.4 Physical and chemical pretreatment 5.5 General conclusions and future perspectives Acknowledgments References Chapter 6 - Plant-microbe association to improve phytoremediation of heavy metal 6.1 Introduction 6.1.1 Phytoremediation 6.2 Metal resistance and uptake in microorganisms 6.3 Plant growth and metal uptake by plant growth-promoting bacteria (PGPB) 6.3.1 Phytoremediation assisted by soil bacteria 6.3.2 Effects of microorganisms on bioavailability of metals/metalloids and mobilization 6.3.3 Low-molecular-mass organic acids 6.3.4 Release of carboxylic acid anions 6.3.5 By secretion of siderophores 6.3.6 Other trace element chelators 6.3.7 Microbial-induced metal immobilization in phytostabilization 6.4 Effects of microorganisms on nutrients’ uptake 6.5 Approach of genetic engineering for improved metal uptake 6.6 Current scenario and future perspective References Chapter 7 - Bacterial-mediated phytoremediation of heavy metals 7.1 Introduction 7.2 Heavy metals effects on living organisms 7.3 Remediation strategies to reduce the HM pollutants 7.3.1 Physicochemical approaches 7.3.2 Biological approaches/bioremediation 7.4 Phytoremediation 7.4.1 Phytoextraction 7.4.2 Phytostabilization 7.4.3 Phytodegradation 7.4.4 Phytovolatilization 7.4.5 Phytofiltration 7.4.6 Rhizodegradation 7.4.7 Phytotransformation 7.5 Microbial remediation 7.5.1 Fungal remediation 7.5.2 Bacterial remediation 7.6 Mechanisms of bacterial-assisted phytoremediation 7.6.1 Plant growth promotion 7.6.2 Bacterial-assisted biodegradation 7.6.3 Biotransformation of HM 7.6.4 Bioleaching 7.6.5 Mobilization 7.6.6 Solubilization 7.6.7 Volatilization 7.6.8 Sequestration/accumulation 7.7 Case studies of PGP bacteria-assisted phytoremediation References Chapter 8 - Recent advances in microbial-aided phytostabilization of trace element contaminated soils 8.1 Introduction 8.2 Phytostabilization 8.2.1 TE behavior in soils - speciation and mobility 8.2.2 TE uptake and transfer in plant tissues 8.2.3 Plant tolerance to TE toxicity 8.2.4 Plant’s selection 8.3 Aided phytostabilization 8.3.1 Effect of microbial amendments on soil properties 8.3.2 Microbial amendment’s effect on TE immobilization. 8.3.3 Microbial amendment’s effect on plant growth and development 8.3.4 Combined use of amendments 8.4 Future scope 8.4.1 Limitations of aided phytostabilisation 8.4.2 Future scope: Phytomanagement of TE-contaminated soils 8.5 Conclusion Acknowledgments References Chapter 9 - Phytoremediation of heavy metal contaminated soil in association with arbuscular mycorrhizal fungi 9.1 Introduction 9.2 Sources of HMs in soil 9.2.1 Natural processes 9.2.2 Anthropogenic processes 9.3 Adverse impacts of HMs 9.3.1 Impacts on the environment 9.3.2 Impact on the soil microbes and its enzymatic activity 9.3.3 Impact on the plants and animals 9.3.4 Impact on human health 9.4 Remediation of metal contaminated soil 9.4.1 Phytoremediation 9.5 Arbuscular mycorrhizal fungi 9.5.1 AMF as mediators of phytoremediation processes 9.5.2 Mechanisms of detoxification involving the association of mycorrhizal fungi and plants 9.5.3 Mechanisms involving the retention by fungal structures 9.6 Biochemical mechanisms 9.6.1 Chelating agents and enzymes 9.6.2 Gene expression mediated by AMF 9.7 Conclusion References chapter 10 - Role of Pb-solubilizing and plant growth-promoting bacteria in Pb uptake by plants 10.1 Introduction 10.2 Presence and forms of Pb in soil 10.3 Phytoextraction of Pb from contaminated soils 10.4 Microbe-assisted Pb phytoextraction 10.5 Pb solubilization mechanisms by bacteria 10.5.1 Acidolysis 10.5.2 Redoxolysis 10.5.2.1 Bio-reduction 10.5.2.2 Bio-oxidation 10.5.3 Complexolysis 10.5.3.1 Low molecular weight organic acids 10.5.3.2 Siderophores 10.5.3.3 Biosurfactants 10.6 Effect of bacteria on plant growth in Pb-contaminated soils 10.6.1 Production of phytohormones 10.6.1.1 Auxins 10.6.1.2 Cytokinins 10.6.1.3 Gibberellins 10.6.2 Improvement of plant nutrition 10.6.2.1 Phosphorus solubilization 10.6.2.2 Siderophore production 10.6.2.3 Nitrogen fixation 10.6.2.4 Improvement of nutrient uptake 10.6.3 ACCD production 10.6.4 Triggering plant antioxidant system 10.7 Effects of bacterial inoculations on Pb phytoextraction 10.7.1 Effects of PGPBs on Pb phytoextraction 10.7.2 Effects of Pb-solubilizing PGPBs on Pb phytoextraction 10.8 Conclusions References Chapter 11 - Role of Cd-resistant plant growth-promoting rhizobacteria in plant growth promotion and alleviation of the p ... 11.1 Introduction 11.1.1 Plant growth promoting rhizobacteria and their classification 11.1.2 Loading of Cd in the environment 11.1.3 Toxic effects of Cd on plants, humans, and microorganisms 11.2 Cadmium-resistant PGPR 11.3 Cadmium-resistance mechanisms in PGPR 11.3.1 Cd removal by several efflux systems 11.3.2 Intra/extracellular Cd binding 11.3.2.1 Intracellular Cd sequestration 11.3.2.2 Extracellular Cd sequestration 11.4 Role of Cd-resistant PGPR to alleviate Cd toxicity in plants 11.4.1 Nitrogen fixation 11.4.2 Phosphate solubilization 11.4.3 ACC deaminase activity 11.4.4 Production of phytohormones 11.4.5 Siderophore production 11.4.6 Production of organic acids 11.4.7 Production of exopolymers 11.5 Alleviation of Cd-induced oxidative stress by Cd-resistant PGPR 11.6 Biotechnological approaches toward Cd-bioremediation 11.7 Bioformulation of Cd-resistant bacteria 11.8 Conclusion and future perspectives Acknowledgments References Chapter 12 - Beneficial plant microbiome assisted chromium phytoremediation 12.1 Introduction 12.2 Chromate ecoavailability 12.3 Chromium toxicity 12.4 Phytoremediation of Cr(VI) 12.4.1 Phytoaccumulation/phytoextraction/phytosequestration 12.4.2 Phytostabilization/phytorestoration/phytoimmobilization 12.4.3 Phytodegradation/phytotransformation/phytodetoxification 12.4.4 Phytovolatilization 12.4.5 Rhizofiltration 12.5 Mechanisms of chromate tolerance in plants 12.5.1 Cr extrusion or restriction 12.5.2 Root exudates 12.5.3 Phytoreduction 12.5.4 Cr chelation 12.5.5 Enzymatic antioxidant system 12.5.6 Nonenzymatic antioxidant system 12.5.7 Plant hormones 12.5.8 Heat shock proteins (HSP) and DNA methylation 12.5.9 Plant microbiome 12.6 Microbes-enhanced phytoremediation mechanisms 12.6.1 Microbial reduction of chromate toxicity 12.6.1.1. Biosorption 12.6.1.2 Bioaccumulation 12.6.1.3 Bioreduction 12.6.1.4 Bioprecipitation 12.6.1.5 Efflux pumps 12.6.1.6 Chromate resistance determinants (CRD) 12.6.2 Plant growth promoting products (PGPP) 12.7 Microbe-assisted phytoremediation studies 12.8 Genetically engineered plants and microbes for chromate bioremediation 12.9 Challenges and future perspectives Acknowledgment Conflict of interest References Chapter 13 - Toxic potential of arsenic and its remediation through microbe-assisted phytoremediation 13.1 Introduction 13.2 Chemical and environmental properties of arsenic 13.3 Biological properties of arsenic and its toxicity 13.4 Root-associated microorganisms 13.5 Phytoremediation with plant-associated microbes 13.5.1 Endophyte-assisted bioremediation 13.5.2 Application of genetic engineering to enhance phytoremediation potentiality 13.6 Mechanism of As accumulation 13.7 Conclusion Acknowledgments References Chapter 14 - Microbe-assisted phytomanagement of fly ash spoiled sites 14.1 Introduction 14.2 Fly ash properties 14.3 Fly ash generation and utilization 14.4 Multiple uses of fly ash 14.5 Problems due to fly ash 14.6 Fly ash management 14.7 Microbial remediation 14.8 Multiple benefits of fly ash phytomanagement 14.9 Limitations of phytomanagement in fly ash spoiled sites 14.10 Conclusion References Chapter 15 - Role of microorganism in phytoremediation of mine spoiled soils 15.1 Introduction 15.2 Mine spoiled soils 15.2.1 Characteristics of mine spoiled soils 15.2.2 Problems associated with mine spoiled soils 15.3 Strategies for management of mine spoiled soil 15.4 Phytorestoration of mine spoiled soils 15.5 Potential plant species suitable for phytorestoration of mine spoiled soils 15.6 Microbial-assisted phytoremediation of abandoned mine sites 15.6.1 Factors affecting microbe-assisted phytoremediation of mining abandoned sites 15.7 Conclusion and future prospects References PART 3 - Microbe-assisted phytoremediation of organic contaminants Chapter 16 - Rhizobacteria assisted phytoremediation of oily sludge contaminated sites 16.1 Introduction 16.2 Role of plants on remediation of contamination 16.3 Role of rhizobacteria on remediation of contaminates 16.4 Potentiality of rhizobacteria assisted phytoremediation to clean up oily sludge contaminated sites 16.5 Conclusion References Chapter 17 - Bioremediation of oil-contaminated sites using biosurfactants 17.1 Introduction 17.2 Oil contaminants 17.3 Bioremediation 17.4 Biosurfactant 17.4.1 Types of biosurfactant 17.4.2 Microorganisms produce biosurfactants 17.5 Mechanisms associated with biosurfactant-mediated bioremediation 17.6 Current scenario and future outlooks 17.7 Conclusions References Chapter 18 - Association of plants and microorganisms for degradation of polycyclic aromatic hydrocarbons 18.1 Introduction 18.2 PAHs and plants 18.2.1 PAH toxicity to plants 18.2.2 PAH uptake, translocation, and accumulation in plants 18.2.3 Factors affecting PAH phytoavailability 18.2.4 PAH effects on plant antioxidant protection 18.2.5 PAH effects on the plant photosynthetic system 18.2.6 Biochemical transformation of PAHs in plants 18.3 The rhizosphere 18.3.1 Root exudate composition and significance 18.3.2 Factors affecting root exudate composition 18.3.3 Root exudate enzymes 18.4 PAH and microorganisms 18.4.1 Microbial communities of PAH-contaminated soil 18.4.2 PAH-degrading bacteria 18.4.3 Pathways for microbial degradation of PAHs 18.5 Plant-microbial cooperation for degradation of PAHs 18.5.1 Coupled metabolism of PAHs 18.5.2 Microbe-assisted phytoremediation of PAH contaminated soil 18.6 Conclusion References Chapter 19 - The potential of engineered endophytic bacteria to improve phytoremediation of organic pollutants 19.1 Introduction 19.2 Uptake mechanism of OPs by plants from soil and water 19.3 Ecology of endophytic bacteria 19.4 Niche of endophytic bacteria 19.5 Host and endophytic diversity 19.6 Interaction between plant and associated endophytic bacteria 19.7 Potential of endophytic bacteria to improve phytoremediation of soil contaminated with OP 19.8 Potential of endophytic bacteria to improve phytoremediation of water contaminated with OPs 19.9 Factor affecting the activity of engineered endophytic bacteria 19.9.1 Properties of soil 19.9.2 Selection of plant 19.9.3 Pollutant concentration 19.9.4 Inoculation methods 19.10 Conclusion References Index