ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Advancement in Polymer-Based Membranes for Water Remediation

دانلود کتاب پیشرفت در غشاهای مبتنی بر پلیمر برای تصفیه آب

Advancement in Polymer-Based Membranes for Water Remediation

مشخصات کتاب

Advancement in Polymer-Based Membranes for Water Remediation

ویرایش:  
نویسندگان: , ,   
سری:  
ISBN (شابک) : 0323885144, 9780323885140 
ناشر: Elsevier 
سال نشر: 2022 
تعداد صفحات: 649
[650] 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 42 Mb 

قیمت کتاب (تومان) : 47,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 9


در صورت تبدیل فایل کتاب Advancement in Polymer-Based Membranes for Water Remediation به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب پیشرفت در غشاهای مبتنی بر پلیمر برای تصفیه آب نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب پیشرفت در غشاهای مبتنی بر پلیمر برای تصفیه آب



پیشرفت‌ها در غشاهای مبتنی بر پلیمر برای تصفیه آب علم و مهندسی پیشرفته غشاء را در پشت فرآیندهای جداسازی در حوزه سیستم‌های غشایی مبتنی بر پلیمر در تصفیه آب توصیف می‌کند. بر جنبه‌های مختلف، از مفاهیم اساسی گرفته تا تجاری‌سازی غشاهای تحت فشار و پتانسیل، به‌روزرسانی‌شده با آخرین پیشرفت‌های فناوری، و مواد پلیمری مرتبط و پتانسیل کاربرد در سیستم‌های تصفیه آب تأکید شده است. همچنین در این کتاب پیشرفت‌هایی در پلیمرها برای کاربرد غشایی در اسمز معکوس، نانوفیلتراسیون، اولترافیلتراسیون، میکروفیلتراسیون، اسمز رو به جلو و غشاهای تبادل یون پلیمری برای الکترودیالیز و دیونیزاسیون خازنی گنجانده شده است.

این کتاب با تحلیل‌های انتقادی و نظرات کارشناسان در سراسر جهان، توجه قابل توجهی را در میان کاربران واقعی، یعنی دانشمندان، مهندسان، صنعت‌گران، کارآفرینان و دانشجویان به‌خود جلب خواهد کرد. span>


توضیحاتی درمورد کتاب به خارجی

Advancements in Polymer-Based Membranes for Water Remediation describes the advanced membrane science and engineering behind the separation processes within the domain of polymer-based membrane systems in water remediation. Emphasis has been put on several aspects, ranging from fundamental concepts to the commercialization of pressure and potential driven membranes, updated with the latest technological progresses, and relevant polymer materials and application potential towards water treatment systems. Also included in this book are advances in polymers for membrane application in reverse osmosis, nanofiltration, ultrafiltration, microfiltration, forward osmosis, and polymeric ion-exchange membranes for electrodialysis and capacitive deionization.

With its critical analyzes and opinions from experts around the world, this book will garner considerable interest among actual users, i.e., scientists, engineers, industrialists, entrepreneurs and students.



فهرست مطالب

Advancement in Polymer-based Membranes for Water Remediation
Copyright
Contents
Preface
Foreword
List of contributors
About the editors
Acknowledgments
1 Microfiltration and ultrafiltration membrane technologies
	1.1 Introduction
		1.1.1 Basics of membrane process
		1.1.2 Historical overview of ultrafiltration and microfiltration membranes
			1.1.2.1 Microfiltration membrane
			1.1.2.2 Ultrafiltration membrane
	1.2 Membrane science and theory
		1.2.1 Solute and solvent transport through microfiltration/ultrafiltration membranes
		1.2.2 Concentration polarization
		1.2.3 Membrane material and geometry
		1.2.4 Mode of operation in the membrane process
		1.2.5 Fouling in microfiltration and ultrafiltration membranes
			1.2.5.1 Regeneration by physical cleaning
			1.2.5.2 Regeneration by chemical cleaning
	1.3 Membrane characterization methods
		1.3.1 Invasive methods
			1.3.1.1 Chemical composition of the membrane surface
				1.3.1.1.1 Attenuated total reflectance Fourier transform infrared spectroscopy
				1.3.1.1.2 X-ray photoelectron spectroscopy
				1.3.1.1.3 Energy dispersive X-ray spectroscopy
			1.3.1.2 Morphologies of the membrane surface
				1.3.1.2.1 Scanning electron microscope
				1.3.1.2.2 Environmental scanning electron microscopy
				1.3.1.2.3 Atomic force microscopy
		1.3.2 Noninvasive methods
			1.3.2.1 Inline method
			1.3.2.2 At-line method
			1.3.2.3 Offline method
	1.4 Module design and process configuration
		1.4.1 Module design
			1.4.1.1 Plate-and-frame membrane module
			1.4.1.2 Tubular module
			1.4.1.3 Spiral-wound module
			1.4.1.4 Hollow fiber/shell and tube module
		1.4.2 Process configuration
			1.4.2.1 Continuous filtration process
			1.4.2.2 Batch filtration
			1.4.2.3 Feed-and-bleed/fed-batch filtration
			1.4.2.4 Single and multistage
			1.4.2.5 Single and multipass
		1.4.3 Commercial fabrication techniques employed for polymeric flat sheet and hollow-fiber membranes
			1.4.3.1 Flat-sheet membranes
			1.4.3.2 Hollow-fiber membranes
	1.5 Application of polymeric ultrafiltration and microfiltration membranes
		1.5.1 Potable water reuse
		1.5.2 Recovery of dye and pigments
		1.5.3 Treatment of effluent generated by dairy processing industries
		1.5.4 Treatment of oily wastewater
		1.5.5 Recovery of heavy metal from industry effluent
	1.6 Summary
	References
2 Polymer-based microfiltration/ultrafiltration membranes
	2.1 Introduction
	2.2 Polymers as raw material to synthesize microfiltration/ultrafiltration membranes
		2.2.1 Classification
		2.2.2 Membrane fabrication method microfiltration/ultrafiltration
			2.2.2.1 Mechanical techniques
				2.2.2.1.1 Stretching
				2.2.2.1.2 Sintering
			2.2.2.2 Chemical techniques
				2.2.2.2.1 Track etching
				2.2.2.2.2 Template leaching
				2.2.2.2.3 Phase inversion
					Vapor-induced phase separation
					Liquid-induced phase separation
					Thermally induced phase separation
					Phase inversion techniques under progress in laboratory
				2.2.2.2.4 Electrospinning
				2.2.2.2.5 3D-printing
				2.2.2.2.6 Nanoimprint lithography
					Thermal nanoimprint lithography
					Photo nanoimprint lithography
		2.2.3 Commercial status of membrane fabrication techniques
			2.2.3.1 Fabrication of flat-sheet membranes
			2.2.3.2 Fabrication of hollow-fiber membranes
	2.3 Effect of polymer-enhanced microfiltration/ultrafiltration membranes
		2.3.1 Structural property
			2.3.1.1 Crystallinity of the polymer
			2.3.1.2 Pore structure
			2.3.1.3 Surface properties
				2.3.1.3.1 Hydrophilic and hydrophobic properties of the membrane
				2.3.1.3.2 Surface charge
		2.3.2 Functionalization methods for membrane surface
			2.3.2.1 Surface functional modification
				2.3.2.1.1 Self-assembly
				2.3.2.1.2 Coating
				2.3.2.1.3 Chemical treatment
				2.3.2.1.4 Plasma treatment
				2.3.2.1.5 Surface graft polymerization
			2.3.2.2 Functionalization of polymeric membrane by molecular imprinting
				2.3.2.2.1 Formation of imprinting sites by surface photo-grafting
				2.3.2.2.2 Formation of imprinting sites by surface deposition
				2.3.2.2.3 Formation of imprinting sites by emulsion polymerization on the surface
			2.3.2.3 Functionalization of polymeric membrane by enzyme immobilization
				2.3.2.3.1 Enzyme immobilization by physical absorption
				2.3.2.3.2 Enzyme immobilization by chemical binding
				2.3.2.3.3 Enzyme immobilization by entrapment
				2.3.2.3.4 Other methods for enzyme immobilization
		2.3.3 Physiochemical properties
			2.3.3.1 Membrane surface modification using hydrophilic materials
			2.3.3.2 Membrane surface modification using hydrophobic/amphiphilic materials
	2.4 Recent advances made in polymeric microfiltration/ultrafiltration membranes for water remediation application
		2.4.1 Polymeric nanocomposite membranes
		2.4.2 Literature review on the recent advances made in the field of polymeric microfiltration/ultrafiltration for water rem...
	2.5 Microplastics and polymeric membranes
	2.6 Prospective
	References
3 Polymer-based nano-enhanced microfiltration/ultrafiltration membranes
	3.1 Introduction
	3.2 Nanocomposite membranes
	3.3 Hollow fiber nano-enhanced membranes
	3.4 Main aspects in membrane performances
		3.4.1 Fouling membranes
		3.4.2 Permeability and selectivity
		3.4.3 Physical properties
	3.5 Carbon nanotubes and graphene oxide
		3.5.1 Fouling
		3.5.2 Permeability and selectivity
		3.5.3 Physical properties
	3.6 Metallic nanoparticles
		3.6.1 Titanium dioxide
		3.6.2 Silver
		3.6.3 Copper
		3.6.4 Zinc oxide
		3.6.5 Fouling
		3.6.6 Permeability and selectivity
		3.6.7 Physical properties
	3.7 Stability of nanocomposite membranes
	3.8 Future research
	3.9 Challenges and future perspectives
	3.10 Conclusions
	References
	Further reading
4 Nanofiltration membrane technologies
	4.1 Introduction
	4.2 Operation principle and transport mechanism
		4.2.1 Nanofiltration pore model development and progress
		4.2.2 Diffusion and filtration mechanism
		4.2.3 Role of membrane charge on NF performance
	4.3 Types of polymeric membranes and application domain
		4.3.1 Polymer used in membrane synthesis
		4.3.2 Other types of NF membranes
			4.3.2.1 Carbon nanomaterials-based NF
			4.3.2.2 Metal–organic framework-based NF
		4.3.3 Application of NF membrane
			4.3.3.1 Dye containing wastewater treatment in textile industry
			4.3.3.2 NF in food processing industry
			4.3.3.3 NF in heavy metals removal from industrial waste
	4.4 Polymeric membrane structure and configurations
	4.5 NF membrane preparation technologies
		4.5.1 Interfacial polymerization
		4.5.2 Phase inversion
		4.5.3 Posttreatment of porous support
		4.5.4 Layer-by-layer assembly
		4.5.5 Hollow fiber NF membrane
	4.6 Commercially available membranes
	4.7 Limitations and key mitigation strategies
		4.7.1 Nexus between NF properties: fouling and antifouling
		4.7.2 Generation of membrane retentate
	4.8 Summary and future directions
	References
5 Polymer-based nanofiltration membranes
	5.1 Introduction
	5.2 Polymer-based nanofiltration membranes
		5.2.1 Natural and bioinspired nanofiltration membranes
		5.2.2 Mixed-matrix nanofiltration membranes
		5.2.3 Block-copolymer nanofiltration membrane
		5.2.4 Intrinsic microporous polymer-based nanofiltration membrane
	5.3 Preparation of polymer-based nanofiltration membranes
		5.3.1 Phase inversion
		5.3.2 Interfacial polymerization
		5.3.3 Layer-by-layer assembly
		5.3.4 Posttreatment
	5.4 Thin-film polymer composite nanofiltration membranes
	5.5 Effect of polymeric support
	5.6 Potential of polymer-composite nanofiltration membranes for water desalination
	5.7 Polymers for solvent-resistant nanofiltration membranes
	5.8 Commercialization status and commercial viability
	5.9 Summary and future direction
	References
6 Polymer-based nanoenhanced nanofiltration membranes
	6.1 Introduction
		6.1.1 Introduction to nanoenhanced nanofiltration membranes
			6.1.1.1 Preparation of nanoenhanced nanofiltration membranes
	6.2 Mixed matrix polymer-based nanoenhanced nanofiltration membranes
		6.2.1 Introduction
		6.2.2 Asymmetric mixed matrix nanofiltration membranes prepared by phase inversion
		6.2.3 Thin-film polymer nanocomposite nanofiltration membranes
			6.2.3.1 Fabrication of thin-film nanocomposite nanofiltration membranes
				6.2.3.1.1 Graphene oxide-based thin-film nanocomposite nanofiltration membranes
				6.2.3.1.2 Carbon nanotube-incorporated thin-film nanocomposite nanofiltration membranes
				6.2.3.1.3 Metal–organic framework-integrated thin-film nanocomposite nanofiltration membranes
				6.2.3.1.4 Nanohybrid structure-based thin-film nanocomposite membranes
	6.3 Electrospun nanofibrous polymers for nanofiltration applications
		6.3.1 Introduction to electrospinning
		6.3.2 Electrospun nanofiber application in nanofiltration
	6.4 Nanoenhanced hollow-fiber nanofiltration membranes
	6.5 Commercialization status and commercial viability
	6.6 Summary and future directions
	Abbreviations
	References
7 Polymer-based bioinspired, biomimetic, and stimuli-responsive nanofiltration membranes
	7.1 Introduction
	7.2 Bioinspired membranes and their applications
		7.2.1 Dopamine-based nanofiltration membrane
		7.2.2 Tannic acid-based nanofiltration membranes
			7.2.2.1 Tannic acid-based nanofiltration membranes with hollow fiber configuration
		7.2.3 Other bioinspired nanofiltration membranes and their application
	7.3 Biomimetic membranes
		7.3.1 Aquaporin-based biomimetic membranes
		7.3.2 Application of aquaporin-based biomimetic nanofiltration membranes
		7.3.3 Aquaporin-based biomimetic nanofiltration membranes with hollow fiber configuration
	7.4 Stimuli-responsive/smart membranes
		7.4.1 pH-responsive membranes
		7.4.2 Magnetically responsive membranes
		7.4.3 Temperature-responsive membrane
		7.4.4 Photo-responsive membranes
		7.4.5 CO2-responsive nanofiltration membranes
		7.4.6 Stimuli-responsive membranes with hollow fiber configuration
	7.5 Commercial status and future directions
	7.6 Summary
	Nomenclature
	References
8 Reverse and forward osmosis membrane technologies
	8.1 Introduction
	8.2 Classification of osmotic processes and basic concept
		8.2.1 Transport membrane mechanism
			8.2.1.1 Irreversible thermodynamics models
			8.2.1.2 Homogeneous models
			8.2.1.3 Solution–diffusion–imperfection model
			8.2.1.4 Extended solution–diffusion model
			8.2.1.5 Pore models
	8.3 Reverse osmosis and forward osmosis membranes
	8.4 Concentration polarization in an osmotic-driven membrane
		8.4.1 External concentration polarization
		8.4.2 Internal concentration polarization
	8.5 Reverse osmosis and forward osmosis membrane fabrication methods
	8.6 Advances in forward osmosis and reverse osmosis membranes’ structures and properties
		8.6.1 Reverse osmosis membrane development
		8.6.2 Forward osmosis membrane development
			8.6.2.1 Phase inversion membranes
				8.6.2.1.1 Cellulose acetate
				8.6.2.1.2 Polybenzimidazole
				8.6.2.1.3 Polyamide-imide
				8.6.2.1.4 Composite membranes
				8.6.2.1.5 Thin-film composite membranes
				8.6.2.1.6 Thin-film nanocomposite membranes
				8.6.2.1.7 Layer-by-layer composite membranes
				8.6.2.1.8 Biomimetic membranes
	8.7 Custom designs of flat sheet forward osmosis and reverse osmosis membranes
		8.7.1 Selective rejection layer
		8.7.2 Support polymeric layer
		8.7.3 Support backing fabric
	8.8 Concluding remarks and recommendations
	References
9 Polymer-based reverse osmosis membranes
	9.1 Introduction
	9.2 Asymmetric polymer-based reverse osmosis membranes
	9.3 Thin-film composite membrane
		9.3.1 Reverse osmosis membranes for boron removal
		9.3.2 Reverse osmosis membranes for antifouling/chlorine tolerant
		9.3.3 Hollow fiber reverse osmosis membranes
	9.4 Potential of different polymer-based reverse osmosis membranes for brackish water desalination
	9.5 Polymer-based reverse osmosis membranes for seawater desalination
		9.5.1 Polyelectrolyte membranes
		9.5.2 Aquaporin biomimetic membranes
		9.5.3 Supramolecular polymers and water-soluble polymers
	9.6 Commercialization status and commercial viability
	9.7 Summary and future direction
	References
10 Polymer-based nano-enhanced reverse osmosis membranes
	10.1 Introduction
	10.2 Preparation strategies of polymer-based nano-enhanced reverse osmosis membranes
		10.2.1 Conventional nanocomposite or mixed matrix membrane
		10.2.2 Thin-film composite with nanocomposite substrate
		10.2.3 Thin-film nanocomposite
		10.2.4 Nanocomposite located at membrane surface
	10.3 Polymer nanocomposite reverse osmosis membranes
		10.3.1 Carbon based
			10.3.1.1 Carbon nanotubes
			10.3.1.2 Graphene oxide
			10.3.1.3 Quantum dots
		10.3.2 Metal and metal oxides based
			10.3.2.1 Silver
			10.3.2.2 Copper
			10.3.2.3 Titanium dioxide
			10.3.2.4 Zinc oxide
			10.3.2.5 Alumina
			10.3.2.6 Metal-organic frameworks
		10.3.3 Other nanoparticles
			10.3.3.1 Silica
			10.3.3.2 Halloysite (aluminosilicate)
			10.3.3.3 Zeolite
			10.3.3.4 Cellulose nanocrystals
	10.4 Potential of different polymer-based nanocomposite reverse osmosis membranes for water desalination
	10.5 Potential other applications of polymer nanocomposite reverse osmosis membranes in water treatment
	10.6 Commercialization status and viability
	10.7 Way forward
	10.8 Conclusion
	References
11 Reuse and recycling of end-of-life reverse osmosis membranes
	11.1 Introduction
	11.2 Reverse osmosis membrane technology
	11.3 Reverse osmosis membranes and modules
	11.4 Fouling in reverse osmosis separation process: problem, prevention, and cleaning protocols
		11.4.1 Inorganic fouling
		11.4.2 Colloidal fouling
		11.4.3 Organic fouling
		11.4.4 Biofouling
		11.4.5 Fouling prevention and mitigation
	11.5 End-of-life reverse osmosis membrane modules: reuse and recycling techniques
		11.5.1 Cleaning strategies adopted for reverse osmosis fouled membranes and discarded modules
		11.5.2 Reuse of discarded reverse osmosis membrane modules
		11.5.3 Recycling discarded reverse osmosis membrane modules
	11.6 Applications of reverse osmosis recycled membranes in other membrane processes
		11.6.1 Reverse osmosis recycled membranes in ultrafiltration and microfiltration process
		11.6.2 Reverse osmosis recycled membranes in membrane distillation, membrane biofilms reactors, and electrodialysis separat...
	11.7 Conclusions
	References
12 Polymer-based forward osmosis membranes
	12.1 Introduction
		12.1.1 Important notes in forward osmosis membrane transport
		12.1.2 Concentration polarization
	12.2 Polymer-based flat sheet forward osmosis membranes
		12.2.1 Single-layer membranes
			12.2.1.1 Cellulosic membranes
			12.2.1.2 Polyamide-imide-based membranes
			12.2.1.3 Polybenzimidazole membranes
			12.2.1.4 Others
		12.2.2 Dual-layer membranes
			12.2.2.1 Support layer
				12.2.2.1.1 Polysulfone-based membranes
				12.2.2.1.2 Polyethersulfone-based membranes
				12.2.2.1.3 Polyacrylonitrile (PAN)-based membranes
				12.2.2.1.4 Cellulosic membranes
				12.2.2.1.5 Polyvinyl chloride based membranes
				12.2.2.1.6 Poly(vinylidene difluoride) (PVDF)-based membranes
				12.2.2.1.7 Polyazole-based membranes
			12.2.2.2 Active layer
				12.2.2.2.1 Monomers
				12.2.2.2.2 Solvent
				12.2.2.2.3 Postmodification
				12.2.2.2.4 Additive
				12.2.2.2.5 Reaction conditions
		12.2.3 Layer-by-layer membranes
		12.2.4 Double-skinned membranes
		12.2.5 Impregnated membranes
		12.2.6 Biomimetic membranes
	12.3 Polymer-based hollow fiber forward osmosis membranes
		12.3.1 Single-layer membranes
		12.3.2 Dual-layer membranes
		12.3.3 Layer-by-layer membranes
		12.3.4 Double-skinned membranes
		12.3.5 Biomimetic membranes
	12.4 Commercialization status and commercial viability
	12.5 Summary and future directions
	Abbreviations
	Nomenclature
	References
13 Polymer-based nano-enhanced forward osmosis membranes
	13.1 Introduction
	13.2 Polymer-based mixed matrix forward osmosis membranes
		13.2.1 Overview
		13.2.2 Common membrane preparation and modification approaches
		13.2.3 Nanomaterials classification
	13.3 Polymer-based nanocomposite flat sheet forward osmosis membranes
		13.3.1 Methods for nanocomposite forward osmosis membrane preparation
		13.3.2 Nanomaterials-incorporated support/substrate layer
			13.3.2.1 Substrate layer containing carbon-based nanomaterials
			13.3.2.2 Substrate layer containing metal-based nanomaterials
		13.3.3 Nanomaterials-incorporated selective/active layer
			13.3.3.1 Active layer containing carbon-based nanomaterials
			13.3.3.2 Active layer containing metal-based nanomaterials
		13.3.4 Nanomaterials-incorporated support/substrate and selective/active layers
	13.4 Polymer-based nanocomposite hollow fiber forward osmosis membranes
		13.4.1 Active layer modifications
			13.4.1.1 Active layer containing carbon-based nanomaterials
			13.4.1.2 Active layer containing metal-based nanomaterials
			13.4.1.3 Biomimetic forward osmosis membranes
	13.5 Nanofibrous-based forward osmosis membranes
	13.6 Nanomaterials used in surface modification of forward osmosis membranes
	13.7 Polymer-based stimuli-responsive forward osmosis membranes
	13.8 Commercialization status of the forward osmosis membranes
	13.9 Summary and future directions
	References
14 Electrodialysis, electrodialysis reversal and capacitive deionization technologies
	14.1 Introduction
	14.2 Structure of ion-exchange membranes
		14.2.1 Anion-exchange membranes
		14.2.2 Cation-exchange membranes
		14.2.3 Bipolar membranes
	14.3 Electrodialysis, electrodialysis reversal, and selective electrodialysis
		14.3.1 General description of electrodialysis cells: configuration and operating principles
		14.3.2 Transport equations and driving forces
		14.3.3 Achievements in the use of electrodialysis, electrodialysis reversal, and selective electrodialysis as water remedia...
	14.4 Capacitive deionization-based technologies
		14.4.1 General description of capacitive deionization cells: configuration, operating principles, and flow patterns
		14.4.2 Evaluation of the efficiency and performance of the capacitive deionization-based technologies
		14.4.3 Achievements in use of capacitive deionization-based technologies as water remediation methods
	14.5 Limitations and key mitigation strategies
		14.5.1 Process cost
			14.5.1.1 Plant investment costs
			14.5.1.2 Operating costs
		14.5.2 Membrane clogging
		14.5.3 Membrane selectivity
	14.6 Summary and future directions
	References
15 Polymeric membranes in electrodialysis, electrodialysis reversal, and capacitive deionization technologies
	15.1 Introduction
	15.2 Ion-exchange membranes and their fabrication processes
		15.2.1 Ion-exchange membranes’ classification
		15.2.2 Preparation of ion-exchange membranes
		15.2.3 Recent developments in polymeric ion-exchange membranes
	15.3 Application and performance of ion-exchange membranes in electrodialysis
		15.3.1 Desalination with electrodialysis
		15.3.2 Wastewater treatment
		15.3.3 Preferential ion separation
		15.3.4 Other ionic separations
	15.4 Application and performance of ion-exchange membranes in electrodialysis reversal
		15.4.1 Principle of electrodialysis reversal
		15.4.2 Desalination of high-concentration solution
		15.4.3 Other ion separation processes
	15.5 Application and performance of ion-exchange membranes in membrane capacitive deionization
		15.5.1 Role of ion-exchange membrane in membrane capacitive deionization
		15.5.2 Desalination processes
		15.5.3 Membrane capacitive deionization applications in other deionization processes
	15.6 Concluding remarks
	References
16 Polymeric nano-enhanced membranes in electrodialysis, electrodialysis reversal and capacitive deionization technologies
	16.1 Introduction
	16.2 Preparation of polymer-based nano-enhanced ion-exchange membranes
		16.2.1 Blending
		16.2.2 In situ technique
	16.3 Analysis of different ion-exchange membranes for water treatment
	16.4 Commercialization status and commercial viability
	16.5 Summary and future directions
	References
17 Polymer-based membranes for membrane distillation
	Abbreviations
	Nomenclature
	17.1 Introduction
		17.1.1 Dearth of water
		17.1.2 History of membrane distillation
		17.1.3 Recent trends in polymer-based membranes in membrane distillation
	17.2 Principle and different configurations of membrane distillation
		17.2.1 Membrane distillation principle
		17.2.2 Direct contact membrane distillation
		17.2.3 Air gap membrane distillation
		17.2.4 Sweep gas membrane distillation
		17.2.5 Vacuum membrane distillation
	17.3 Fabrication techniques and module designs of MD membrane
		17.3.1 Phase inversion
		17.3.2 Stretching
		17.3.3 Sintering
		17.3.4 Electrospinning
		17.3.5 MD membrane modules and designs
	17.4 Membrane materials for MD
	17.5 Characteristics of MD membrane
		17.5.1 Liquid entry pressure
		17.5.2 Membrane thickness
		17.5.3 Pore size and pore size distribution
		17.5.4 Porosity and tortuosity of membrane
		17.5.5 Mechanical properties
		17.5.6 Thermal conductivity
	17.6 Operational parameters in membrane distillation
		17.6.1 Feed temperature
		17.6.2 Flow rate
		17.6.3 Feed concentration
		17.6.4 Air gap and long operation
		17.6.5 Membrane type
	17.7 Fouling and wetting phenomena
	17.8 Prevention methods of fouling and wetting
	17.9 Temperature and concentration polarization
	17.10 Applications of membrane distillation
	17.11 Economics and energy consumption of membrane distillation
	17.12 Conclusion and future directions in membrane distillation
	Acknowledgments
	References
Index




نظرات کاربران