ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Advanced Polymeric Materials (River Publishers Series in Polymer Science)

دانلود کتاب مواد پلیمری پیشرفته (سری ناشران رودخانه در علم پلیمر)

Advanced Polymeric Materials (River Publishers Series in Polymer Science)

مشخصات کتاب

Advanced Polymeric Materials (River Publishers Series in Polymer Science)

ویرایش: [1 ed.] 
نویسندگان: ,   
سری:  
ISBN (شابک) : 879360968X, 9788793609686 
ناشر: River Publishers 
سال نشر: 2018 
تعداد صفحات: 334 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 10 Mb 

قیمت کتاب (تومان) : 48,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 5


در صورت تبدیل فایل کتاب Advanced Polymeric Materials (River Publishers Series in Polymer Science) به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب مواد پلیمری پیشرفته (سری ناشران رودخانه در علم پلیمر) نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی درمورد کتاب به خارجی



فهرست مطالب

Cover
Half Title
Series
Title
Copyright
Contents
Preface
List of Contributors
List of Figures
List of Tables
List of Abbreviations
1 Bisbenzoxazine–Bismaleimide Blends: Thermal Studies
	1.1 Introduction
	1.2 Experimental
		1.2.1 Materials
		1.2.2 Synthesis of Bis(3,4-Dihydro-2H-3-Phenyl-1, 3-Benzoxazinyl) Isopropane (BAB)
		1.2.3 Synthesis of 2,2-Bis(4-Nitrophenoxyphenyl) Propane (DN-BPAPCNB)
		1.2.4 Preparation of 2,2-Bis(4-Aminophenoxy Phenyl) Propane (DA-BPAPCNB)
		1.2.5 Preparation of Bisamic Acid (BAX)
		1.2.6 Preparation of 2,2-Bis[4-(4-Maleimidophenoxy Phenyl)]propane (EXBMI)
		1.2.7 Blending of the Materials
		1.2.8 Polymerization of the Materials
		1.2.9 FTIR Studies
		1.2.10 Differential Scanning Calorimetric (DSC) Studies
		1.2.11 Thermogravimetric (TG) Studies
	1.3 Results and Discussion
		1.3.1 FTIR Studies
		1.3.2 DSC Studies
		1.3.3 TG and DTG Studies
	1.4 Conclusions
	Acknowledgements
	References
2 Studies on Thermosetting Resin Blends: Bispropargyl Ether-Bismaleimide
	2.1 Introduction
		2.1.1 Thermosetting Resins
		2.1.2 High Performance Thermosets
		2.1.3 Bismaleimide
		2.1.4 Acetylene-terminated Resins (ATRs)
		2.1.5 Propargyl-terminated Resins (PTRs)
		2.1.6 Property Enhancement in PT Resins
		2.1.7 Literature
	2.2 Experimental
		2.2.1 Preparation of BPEBPA, BMIM, and BMIE
		2.2.2 Blending of Bispropargyl Ether of Bisphenol-A with BMIM and BMIE
		2.2.3 Thermal Curing of the Materials
		2.2.4 Methods
			2.2.4.1 FTIR analysis
			2.2.4.2 DSC analysis
			2.2.4.3 TG analysis
	2.3 Results and Discussion
		2.3.1 FTIR Studies
		2.3.2 DSC Studies
		2.3.3 TG and DTG Studies
	2.4 Conclusions
	Acknowledgements
	References
3 Synthesis, Characterization, Magnetic, Thermal and Electrochemical Studies of Oxovanadium(IV) Complex of 2-thiophenecarba Benzhydrazone
	3.1 Introduction
	3.2 Experimental
		3.2.1 Physical Measurements
		3.2.2 Materials
		3.2.3 Synthesis of Ligand
			3.2.3.1 Synthesis of 2-thiophenecarba benzhydrazone
		3.2.4 Synthesis of Complex
			3.2.4.1 Preparation of 2-thiophenecarba benzhydrazonato oxovanadium(IV)
	3.3 Results and Discussion
		3.3.1 Characterization of the Ligand (2-Thiophenecarba Benzhydrazone)
		3.3.2 Characterization of the Complex
		3.3.3 Proposed Structure of the Complex
	3.4 Conclusion
	Acknowledgements
	References
4 Sorption and Desorption Analyses of Sorbents for Oil-spill Control
	4.1 Introduction
		4.1.1 Pollution-prevention Application of Polymers
		4.1.2 Problem of Oil Spill
	4.2 Factors Affecting the Performance of Sorbents
	4.3 Sorption and Desorption Kinetics
		4.3.1 Sorption Kinetics
		4.3.2 Desorption Models
		4.3.3 Sorption-desorption Analysis of Polyurethane Foam
	4.4 Conclusion
	References
5 Polyhexahydrotriazines: Synthesis and Thermal Studies
	5.1 Introduction
		5.1.1 Polymer
		5.1.2 Classification based on Thermal Behavior
		5.1.3 Thermosetting Polymer
		5.1.4 Thermoset Materials
			5.1.4.1 Phenol formaldehyde
				5.1.4.1.1 Novolacs
				5.1.4.1.2 Resoles
			5.1.4.2 Urea–formaldehyde resin
			5.1.4.3 Melamine formaldehyde resin
			5.1.4.4 Unsaturated polyester resin
			5.1.4.5 Epoxy resins
			5.1.4.6 Bismaleimides
			5.1.4.7 Bispropargyl ethers
			5.1.4.8 Cyanate ester
			5.1.4.9 Triazines
			5.1.4.10 Polyhexahydrotriazine
	5.2 Experimental
		5.2.1 Preparation of Hemiaminal Using 4,4’-Methylenedianiline (HA-MDA)
		5.2.2 Thermal Curing
		5.2.3 Methods
	5.3 Results and Discussion
		5.3.1 FTIR Studies
		5.3.2 Thermal Studies
	5.4 Conclusion
	Acknowledgements
	References
6 Influence of Cement Behavior with and without Polymer Nano Composites
	6.1 Introduction
	6.2 Experimental Program
		6.2.1 Tests on Cement Mortar
	6.3 Results
	6.4 Discussions of Test Results
		6.4.1 Physical Characteristics
		6.4.2 Dispersion Mechanism
		6.4.3 Compressive Strength
	6.5 Conclusions
	References
7 Effect of Structure of Diphenol on Polymerization of Bis(isoimide)
	7.1 Introduction
		7.1.1 High-performance Thermosetting Resin
		7.1.2 Alkyd Resins
		7.1.3 Amino Resins
		7.1.4 Unsaturated Polyester Resins
		7.1.5 Allyl Resins
		7.1.6 Epoxy Resins
		7.1.7 Polyurethanes
		7.1.8 Silicone Resins
		7.1.9 Cyanate Ester Resins
		7.1.10 Phenolic Resins
			7.1.10.1 Allyl functional phenols
			7.1.10.2 Bisoxazoline phenols
			7.1.10.3 Phenolic resins epoxy systems
		7.1.11 Polyimide
			7.1.11.1 Classification of polyimides
			7.1.11.2 Properties of polyimide
		7.1.12 Bismaleimides (BMIs)
		7.1.13 Isoimides
		7.1.14 Polyisoimide
		7.1.15 Bis(isoimides)
		7.1.16 Maleimide and Isomaleimide
	7.2 Experimental
		7.2.1 Materials
		7.2.2 Preparation of Bis(isoimide) of 4,4’-Methylene Dianiline
		7.2.3 Blending of Bisphenols with Bis(isoimide) (VS)
		7.2.4 Thermal Curing
		7.2.5 Fourier-transform Infrared (FTIR) Studies
		7.2.6 Differential Scanning Calorimetric (DSC) Studies
		7.2.7 Thermogravimetric (TG) Studies
	7.3 Results and Discussion
		7.3.1 Fourier-transform Infrared Studies
		7.3.2 Differential Scanning Calorimetric Studies
		7.3.3 TG and DTG Studies
	7.4 Conclusion
	Acknowledgements
	References
8 Natural Fiber Based Bio-materials: A Review on Processing, Characterization and Applications
	8.1 Composite Materials
		8.1.1 Particle Reinforced Composite
		8.1.2 Fiber-reinforced Composite
			8.1.2.1 Continuous fiber composite
			8.1.2.2 Discontinuous fiber composite
		8.1.3 Laminate Composite
		8.1.4 Flake Composite
		8.1.5 Hybrid Composite
	8.2 Classification Based on Matrix Materials
		8.2.1 Metal Matrix Composite
		8.2.2 Ceramic Matrix Composite
		8.2.3 Polymer Matrix Composite
	8.3 Natural Fiber Reinforced Polymer Composites
		8.3.1 Matrix
		8.3.2 Reinforcement
		8.3.3 Fabrication Methods
			8.3.3.1 Hand lay-up
			8.3.3.2 Compression moulding
			8.3.3.3 Injection moulding
			8.3.3.4 Pultrusion
			8.3.3.5 Filament winding
		8.3.4 Structure of Natural Fiber
	8.4 Characterization
		8.4.1 Mechanical Characterization
		8.4.2 Thermal Characterization
		8.4.3 Water Absorption Properties
		8.4.4 Tribological Behavior
	8.5 Application of Natural Fiber Reinforced Polymer Composite
	8.6 Conclusion
	References
9 Tribological Performance of Polymer Composite Materials
	9.1 Introduction
	9.2 Tribological Characterization Techniques for Polymer Composites
	9.3 Preparation of Polymer Nanocomposites
	9.4 Tribology Study of Different Polymer Nanocomposites
		9.4.1 Metallic Nanoparticles-based Polymer Nanocomposites
		9.4.2 Nanometal Oxide-based Polymer Nanocomposites
		9.4.3 Nanoclay-based Polymer Nanocomposites
		9.4.4 Carbon Nanotube-based Polymer Nanocomposites
		9.4.5 Graphene-based Polymer Nanocomposites
		9.4.6 Fullerenes-based Polymer Nanocomposites
		9.4.7 Nanodiamonds-based Polymer Nanocomposites
	9.5 Conclusion
	References
10 Computational Modeling and Theoretical Strategies for the Design of Chiral Recognition Sites Using Molecular Imprinting Technology
	10.1 Introduction
		10.1.1 Enantiomeric Sensing System Tailored by Molecular Imprinting Technology
		10.1.2 Computational Modeling
	10.2 Theoretical and Computational Strategies in MIPs
	10.3 Conclusions
	References
11 Ultrafast Characterization 2D Semiconducting TMDC for Nanoelectronics Application
	11.1 Introduction
	11.2 Ultrafast Characterization Process
	11.3 Ultrafast Characterization Techniques
		11.3.1 Ultrafast Transient Absorption
		11.3.2 Time-resolved Photo Electron Spectroscopy
	11.4 Graphene
	11.5 Two-Dimensional Semiconductors
	11.6 Direct and Indirect Band Gaps
	11.7 Transition Metal Dichalgogenide
	11.8 Preparation of Transition Metal Dichalcogenides
		11.8.1 Exfoliation Method for 2D Transition Metal Dichalcogenide
		11.8.2 Chemical Vapor Deposition for Two-dimensional Transition Metal Dichalcogenide
		11.8.3 Characterization of Transition Metal Dichalcogenide
			11.8.3.1 Optical properties
			11.8.3.2 Raman spectra
			11.8.3.3 Photoluminescence (PL) evaluation
			11.8.3.4 Electrical property
			11.8.3.5 Electrical transport property
			11.8.3.6 Electrical performance
		11.8.4 Different Types of TMDC Materials
			11.8.4.1 Ultrafast process in MoS2
			11.8.4.2 Ultrafast process in WSe2
		11.8.5 Application
			11.8.5.1 Digital electronic devices
			11.8.5.2 TMDC transistors
			11.8.5.3 Optoelectronics
	11.9 Conclusion
	References
Index
About the Editors




نظرات کاربران