ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Advanced Micro- and Nano-manufacturing Technologies: Applications in Biochemical and Biomedical Engineering (Materials Horizons: From Nature to Nanomaterials)

دانلود کتاب فناوری‌های پیشرفته تولید میکرو و نانو: کاربردها در مهندسی بیوشیمی و بیوپزشکی (افق مواد: از طبیعت تا نانومواد)

Advanced Micro- and Nano-manufacturing Technologies: Applications in Biochemical and Biomedical Engineering (Materials Horizons: From Nature to Nanomaterials)

مشخصات کتاب

Advanced Micro- and Nano-manufacturing Technologies: Applications in Biochemical and Biomedical Engineering (Materials Horizons: From Nature to Nanomaterials)

ویرایش: [1st ed. 2022] 
نویسندگان:   
سری:  
ISBN (شابک) : 9811636443, 9789811636448 
ناشر: Springer 
سال نشر: 2021 
تعداد صفحات: 412
[404] 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 12 Mb 

قیمت کتاب (تومان) : 44,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 1


در صورت تبدیل فایل کتاب Advanced Micro- and Nano-manufacturing Technologies: Applications in Biochemical and Biomedical Engineering (Materials Horizons: From Nature to Nanomaterials) به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب فناوری‌های پیشرفته تولید میکرو و نانو: کاربردها در مهندسی بیوشیمی و بیوپزشکی (افق مواد: از طبیعت تا نانومواد) نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب فناوری‌های پیشرفته تولید میکرو و نانو: کاربردها در مهندسی بیوشیمی و بیوپزشکی (افق مواد: از طبیعت تا نانومواد)

این جلد بر مبانی و پیشرفت‌ها در فناوری‌های تولید میکرو و نانو که در حوزه‌های بیوپزشکی و بیوشیمیایی اعمال می‌شود، تمرکز دارد. مطالب این جلد پوشش جامعی از اصول فیزیکی فناوری‌های ساخت پیشرفته و دانش کاربرد آن‌ها در ساخت دستگاه‌ها و سیستم‌های زیست‌پزشکی ارائه می‌کند. کتاب با مستندسازی سفر کوچک سازی و ساخت میکرو و نانو آغاز می شود. سپس به اصول فناوری‌های پیشرفته مختلف مانند قالب‌گیری میکرو سیم، چاپ سه‌بعدی، لیتوگرافی، چاپ، ماشین‌کاری مستقیم لیزری و ماشین‌کاری با کمک پلاسما با لیزر می‌پردازد. همچنین فناوری های مبتنی بر لیزر را پوشش می دهد که به دلیل انعطاف پذیری، سهولت در کنترل و کاربرد، دقت بالا و در دسترس بودن، گزینه امیدوارکننده ای هستند. این فناوری ها را می توان برای پردازش چندین ماده مانند شیشه، پلیمرها: پلی کربنات، پلی دی متیل سیلوکسان، پلی متیل متاکریلات و فلزاتی مانند فولاد ضد زنگ که معمولاً در ساخت دستگاه های زیست پزشکی مانند فناوری میکروسیال، سنسورهای نوری و فیبر نوری استفاده می شود، استفاده کرد. و حسگرهای زیستی الکتروشیمیایی. همچنین پیشرفت‌ها در فناوری‌های مختلف مبتنی بر MEMS/NEMS و کاربردهای آن‌ها در تبدیل انرژی و دستگاه‌های ذخیره‌سازی را مورد بحث قرار می‌دهد. این فصل ها توسط متخصصانی از حوزه های تولید میکرو و نانو، مهندسی مواد، نانو بیوتکنولوژی و کاربران نهایی مانند پزشکان، مهندسان، دانشگاهیان با سابقه بین رشته ای نوشته شده است. این کتاب راهنمای مفیدی برای دانشگاه و صنعت خواهد بود.


توضیحاتی درمورد کتاب به خارجی

This volume focuses on the fundamentals and advancements in micro and nanomanufacturing technologies applied in the biomedical and biochemical domain. The contents of this volume provide comprehensive coverage of the physical principles of advanced manufacturing technologies and the know-how of their applications in the fabrication of biomedical devices and systems. The book begins by documenting the journey of miniaturization and micro-and nano-fabrication. It then delves into the fundamentals of various advanced technologies such as micro-wire moulding, 3D printing, lithography, imprinting, direct laser machining, and laser-induced plasma-assisted machining. It also covers laser-based technologies which are a promising option due to their flexibility, ease in control and application, high precision, and availability. These technologies can be employed to process several materials such as glass, polymers: polycarbonate, polydimethylsiloxane, polymethylmethacrylate, and metals such as stainless steel, which are commonly used in the fabrication of biomedical devices, such as microfluidic technology, optical and fiber-optic sensors, and electro-chemical bio-sensors. It also discusses advancements in various MEMS/NEMS based technologies and their applications in energy conversion and storage devices. The chapters are written by experts from the fields of micro- and nano-manufacturing, materials engineering, nano-biotechnology, and end-users such as clinicians, engineers, academicians of interdisciplinary background. This book will be a useful guide for academia and industry alike.  



فهرست مطالب

Preface
Contents
About the Editors
1 Nanomaterials Based Biosensing: Methods and Principle of Detection
	1 Introduction
	2 What Makes a Sensor Good?
	3 Methods for Biosensors Formulation
	4 Working Principle
		4.1 Nanoparticles (0D Materials)
		4.2 Nanowire (1D Materials)
		4.3 Nanosheet Based (2D)
		4.4 3D Nanomaterials
		4.5 Electrochemical Sensor
		4.6 Electrochemical Glucose Biosensor: How Nanoscale Materials Appear to Play a Role?
	5 Biological Recognition Element
	6 Challenges
	Questions and Answers to Check Your Reading
	References
2 Pathways to Translate the Biomedical Prototypes
	1 Introduction
	2 Diagnostic Biosensors: An Overview
	3 Planning for Device
	4 Initial Implementation Stages
	5 Design and Development
	6 Information to Regulatory Body
	7 Product Launch
	8 Post Product Launch
	9 Preparing for ICMR Inspections
	10 Barriers for Commercialization
	11 Summary
	References
3 Accuracy of Biosensors as Rapid Diagnostic and Biochemical Monitoring Tools for Non-communicable Diseases Management
	1 Introduction
		1.1 Technology for Detection of Non-Communicable Diseases
	2 Communication Technology for Biosensor
		2.1 Architecture of Wireless Biosensor Networks
		2.2 Communication Architecture
		2.3 Communication Protocol Layer
		2.4 Challenges in Designing WBNs
		2.5 Issues of WBAN in Healthcare System
		2.6 Interference in WBNs
		2.7 Interference Mitigation
	3 Conclusions and Future Directions
	References
4 Rapid Manufacturing of Biomedical Devices: Process Alternatives, Selection and Planning
	1 Introduction
	2 Biomedical Devices
		2.1 Classification of Biomedical Devices and Systems
		2.2 Custom and Stock Device Design
	3 Rapid Manufacturing
		3.1 Classification of Rapid Manufacturing Processes
		3.2 Allied Technologies
		3.3 Implications of Rapid Manufacturing
	4 Rapid Manufacturing of Biomedical Devices
		4.1 Biomedical Fields of Rapid Manufacturing Application
		4.2 Process Planning
		4.3 Selection of an Appropriate AM Technology
		4.4 Selection of Allied Processes
	5 Challenges in Rapid Manufacturing of Biomedical Devices
		5.1 Process Related Challenges
		5.2 Management-Related Challenges
	6 Conclusion
	References
5 Advanced Finishing Processes for Biomedical Applications
	1 Introduction
	2 Applications and Advantages of Nanofinishing in the Biomedical Industry
	3 Finishing Processes for Biomedical Implants
		3.1 Abrasive Flow Finishing (AFF)
		3.2 Abrasive Jet-Based Finishing
		3.3 Magnetorheological Fluid-Based Finishing (MRFF)
		3.4 Chemical Polishing (CP)
		3.5 Electrolysis-Based Polishing (EBP)
		3.6 Chemo-Mechanical Magnetorheological Finishing (CMMRF)
		3.7 Magnetorheological Abrasive Flow Finishing (MRAFF)
		3.8 Magnetorheological Jet Finishing (MRJF)
		3.9 Ball End Magnetorheological Finishing (BEMRF)
		3.10 Ultrasonic Polishing (UP)
		3.11 Laser Polishing (LP)
	4 Conclusions
	References
6 Advanced Microchannel Fabrication Technologies for Biomedical Devices
	1 Introduction
	2 Overview of Various Microchannel Fabrication Technologies
	3 Microwire Moulding
	4 Lithography Technology
	5 Embossing or Imprinting Technology
	6 Laser Direct Machining
	7 Laser-Induced Plasma-Assisted Ablation (LIPAA)
	8 Summary
	References
7 Droplet Microfluidics—A Tool for Biosensing and Bioengineering Applications
	1 Introduction
	2 Open Surface Droplet Microfluidics
		2.1 Advantages of Open Surface Droplet Microfluidics
		2.2 Fabrication Technology of Extreme Wetting Surfaces
		2.3 Some Applications Based on Open Surface Droplet Microfluidics
	3 In-channel Techniques
		3.1 Reagent Encapsulation
		3.2 Cell Manipulation
		3.3 Drug Delivery
		3.4 Droplet Screening
		3.5 Artificial Cells
		3.6 PCR
		3.7 3D Cell Culture and Cell-Laden Hydrogel Droplets
	4 Conclusion and Perspective
	References
8 Advances in Microfluidic Techniques for Detection and Isolation of Circulating Tumor Cells
	1 Introduction
	2 Detection and Isolation of CTCs
		2.1 Label-Free Techniques
		2.2 Label-Based Techniques
		2.3 Nucleic Acid-Based CTC Detection
	3 Limitations in Microfluidic-Based CTCs Detection and Isolation
		3.1 Lower Abundance of CTCs in Blood Cells
		3.2 Non-specificity
		3.3 Epithelial to Mesenchymal Transition (EMT)
		3.4 Lack of Universal CTC Identification Technique
		3.5 Post-processed Cell Viability
		3.6 Low Throughput and Time-Consuming
	4 Future Scope for Microfluidics-Based CTC Detection and Isolation
	5 Conclusion
	References
9 Localized Surface Plasmon Resonance Sensors for Biomarker Detection with On-Chip Microfluidic Devices in Point-of-Care Diagnostics
	1 Introduction
	2 Fundamental of LSPR
	3 Theoretical Concept
		3.1 Mie Theory
		3.2 Refractive Index Sensitivity
		3.3 LSPR Configurations
	4 Characteristics of LSPR
		4.1 Material Used
		4.2 Nanoparticles Size and Shape
	5 Fabrication Technique
		5.1 PDMS-Based LSPR-Microfluidics Coupling
		5.2 PMMA-Based LSPR-Microfluidics Coupling
	6 Functionalization of LSPR Biosensor
	7 Detection of Various Biomarkers Using LSPR-Based Microfluidic Devices
		7.1 LSPR-Based PDMS Microchannel
		7.2 Nanoparticles Geometry and Its Influence in Plasmonic Peak Shifts
		7.3 LSPR in Multiplexing
	8 Integrated LSPR Biosensors in POC Diagnostics Device: Challenges and Road Ahead
		8.1 On-Chip Blood-Plasma Separation Microfluidics Platform
		8.2 Acoustic-Driven Plasmofluidics
		8.3 LSPR Integrated Photothermal Effect
		8.4 Aptamer-Induced Sensitivity
	9 Challenges and Road Ahead
	10 Conclusion
	References
10 Development of Piezoelectric Nanogenerator Based on Micro/Nanofabrication Techniques and Its Application on Medical Devices
	1 Introduction
	2 Working Principle of Piezoelectric Nanogenerator
	3 Materials for Piezoelectric Nanogenerators
		3.1 Lead-Based Materials
		3.2 Lead-Free Materials
		3.3 Polymeric Materials
		3.4 Composite Materials
	4 Medical Applications
		4.1 Blood Pressure Sensor
		4.2 Cardiac Sensor
		4.3 Auditory Nerve Stimulation in the Cochlea
		4.4 Deep Brain Stimulation
		4.5 Other Applications
	5 Challenges and Future Development
	6 Conclusions
	References
11 Optical Biosensors Towards Point of Care Testing of Various Biochemicals
	1 Introduction
	2 Overview of Optical Biosensors
		2.1 Label-Based Fluorescence Optical Biosensors
		2.2 Label-Free Evanescence-Based Optical Biosensors
	3 Conclusion and Outlook
	References
12 Blood Coagulation System and Carbon-Based Nanoengineering for Biomedical Application
	1 Introduction
	2 Overview of the Blood Coagulation System
		2.1 Platelet
		2.2 Plasma Proteins and Clotting Factors
		2.3 Coagulation Cascade
	3 Carbon-Based Nanomaterials
		3.1 Carbon Nanotubes
		3.2 Graphene
		3.3 Nanodiamonds
		3.4 Other Carbon-Based Nanomaterials
	4 Interaction of Carbon-Based Nanomaterials and Blood Coagulation System
		4.1 Effect of Carbon-Based Nanomaterials on Platelet Functions
		4.2 Coagulation Proteins—Carbon-Based Nanomaterials Interaction
	5 Sophisticated Techniques to Characterize Carbon-Based Nanomaterials—Blood Coagulation System Interaction
		5.1 Flow Cytometry
		5.2 Electron Microscopy
		5.3 Platelet Aggregometry
	6 Summary, Limitations, and Future Perspectives
	References
13 Opportunities and Challenges in Medical Robotic Device Development
	1 Introduction
	2 Opportunities in Medical Device Development
		2.1 Software-Driven Medical Devices
		2.2 Surgical Robots and Minimally Invasive Surgery (MIS)
	3 Major Challenges in Medical Device Development
		3.1 Data Security and Product Safety
		3.2 Process and Product Validation
	4 Conclusion
	References
14 Flexible Organic Field-Effect Transistors for Biomimetic Applications
	1 Introduction
		1.1 Historical Perspective
		1.2 Flexible Electronics Advantages
		1.3 Applications
	2 Organic Field-Effect Transistors
		2.1 Device Structure
		2.2 Operation
		2.3 Flexible OFETs
		2.4 Operational Stability
		2.5 Low Voltage Operation
	3 OFETs for Smart Applications
		3.1 OFETs as Sensors for Biomimetic Applications
		3.2 OFETs Toward Green Electronics
	4 Summary
	References
15 Methods for Surface Superfinishing of Prosthesis
	1 Introduction
	2 Surface Superfinishing Operations for Prostheses
		2.1 Magnetorheological Fluid Assisted Finishing Processes
		2.2 Abrasive Flow Finishing
		2.3 Large Area Electron Beam Irradiation
		2.4 Electropolishing
		2.5 Electrolytic In-Process Dressing (ELID) Grinding
		2.6 Chemical Mechanical Polishing
	3 Selection of a Suitable Surface Superfinishing Process
	4 Conclusions
	References
16 Principles of Advanced Manufacturing Technologies for Biomedical Devices
	1 Introduction
	2 Subtractive Manufacturing
		2.1 Mechanical Machining
		2.2 Photolithography
		2.3 Replication Technologies
		2.4 Other Important Fabrication Technologies
	3 Biomedical Additive Manufacturing
		3.1 Bio-Printing
		3.2 Extrusion-Based Bioprinting
		3.3 Inkjet Printing
		3.4 Laser Bioprinting
		3.5 Vat Photopolymerisation
		3.6 Laser Micromachining
	4 Characterization of Micro and Nano Biological Samples
	5 Nanometrology
		5.1 Bio Characterization
		5.2 Confocal Microscopy
		5.3 Atomic Force Microscopy (AFM)
		5.4 Scanning Tunneling Microscopy (STM)
		5.5 Scanning Near-Field Optical Microscopy (SNOM)
		5.6 Scanning-Electron Microscopy (SEM)
		5.7 Transmission Electron Microscopy
		5.8 Auger Electron Microscopy
		5.9 X-Ray Absorption Spectroscopy
		5.10 Flow Cytometer
	6 Conclusions
	References




نظرات کاربران