دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: مواد ویرایش: نویسندگان: Ajit Behera سری: ISBN (شابک) : 3030803589, 9783030803582 ناشر: Springer سال نشر: 2021 تعداد صفحات: 762 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 37 مگابایت
در صورت تبدیل فایل کتاب Advanced Materials: An Introduction to Modern Materials Science به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب مواد پیشرفته: مقدمه ای بر علم مواد مدرن نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب مقدمه ای کامل بر موضوعات ضروری در علم مواد مدرن ارائه می دهد. طیفی از موضوعات علم مواد، مواد معدنی و آلی، نانومواد، بیومواد و آلیاژها را در یک منبع منسجم و جامع گرد هم میآورد. تکنیکهای سنتز و پردازش، پیکربندیهای ساختاری و کریستالوگرافی، خواص، طبقهبندی، مکانیسمهای فرآیند، کاربردها و مسائل عددی مرتبط در هر فصل مورد بحث قرار میگیرند. خلاصهها و مشکلات انتهای فصل برای عمیقتر کردن و تقویت درک خواننده گنجانده شده است.
This book provides a thorough introduction to the essential topics in modern materials science. It brings together the spectrum of materials science topics, spanning inorganic and organic materials, nanomaterials, biomaterials, and alloys within a single cohesive and comprehensive resource. Synthesis and processing techniques, structural and crystallographic configurations, properties, classifications, process mechanisms, applications, and related numerical problems are discussed in each chapter. End-of-chapter summaries and problems are included to deepen and reinforce the reader's comprehension.
About the Book Contents About the Author Chapter 1: Shape-Memory Materials 1.1 Introduction 1.2 Shape Memory Alloy 1.2.1 Historical Background of SMAs 1.2.2 Fabrication Processes of SMAs 1.2.2.1 Vacuum Melting 1.2.2.2 Powder Metallurgy 1.2.2.3 Additive Manufacturing 1.2.2.4 Thermal Spray 1.2.2.5 Plasma Melting 1.2.2.6 Magnetron Sputtering Deposition 1.2.2.7 Post Fabrication Process 1.2.3 Shape Memory Effect 1.2.4 Superelasticity or Pseudoelasticity 1.2.5 Phase Transformation Phenomenon in SMA 1.2.6 Martensite Reorientation 1.2.7 Crystallography of Phases 1.2.8 Thermodynamics of Phase Transformation 1.2.9 Training and Stability of SMA 1.2.10 Heating Methods of Temperature-Induced SMA 1.2.11 Types of Shape Memory Alloys 1.2.11.1 One-Way Shape Memory Alloy 1.2.11.2 Two-Way Shape Memory 1.2.12 Different Parameters of NiTi SMA 1.2.12.1 Effect of Thermomechanical Treatment 1.2.12.2 Effects of Aging 1.2.12.3 Effect of Grain Size 1.2.12.4 Effect of Deviation from Equiatomic Stoichiometry 1.2.12.5 Effect of Additive Elements 1.2.12.6 Effect of Precipitation 1.2.13 Potential Applications 1.2.13.1 In Space and Aero-Industries 1.2.13.2 In Automobile Industries 1.2.13.3 In Electrical and Electronics 1.2.13.4 In Biomedical Industries 1.2.13.5 Other Industries 1.2.14 Advantages of Shape Memory Alloy 1.3 Shape Memory Polymer 1.3.1 Thermo-Stimulated SMP 1.3.2 Electric-Stimulated SMP 1.3.3 Light-Stimulated SMP 1.3.4 Magnetically Stimulated SMP 1.3.5 Humid-Stimulated SMP 1.3.6 Shape Memory Effect of SMP 1.3.7 Basics of Reinforcement in SMP 1.3.8 Fabrication and Shaping Techniques of SMP 1.3.9 Application of SMPs 1.3.9.1 Medical Applications 1.3.9.2 In Aerospace 1.3.9.3 In Textile Industries 1.3.9.4 Automobile 1.3.9.5 Electric, Electronics, and Robotics 1.3.9.6 Other Industrial Applications 1.3.10 Advantages and Disadvantages of SMP 1.4 Shape Memory Ceramic 1.4.1 Various Shape-Memory Ceramics 1.4.1.1 Zirconia-Based SMC 1.4.1.2 Lanthanum-Niobium oxide SMC 1.4.1.3 Advantage and Disadvantage of SMCs 1.5 Shape Memory Hybrids 1.5.1 Basic Mechanism Behind SHM 1.5.2 Responses in SMH 1.6 Summary References Chapter 2: Piezoelectric Materials 2.1 Introduction 2.2 History of Piezoelectric 2.3 Piezoelectric Effect 2.3.1 Direct Piezoelectric Effect 2.3.2 Inverse Piezoelectric Effect 2.4 Mechanism and Working of Piezoelectric Effect 2.5 Various Piezoelectric Constants 2.6 Piezoelectric Charge Constant 2.7 Piezoelectric Voltage Constant 2.8 Permittivity Constant 2.9 Elastic and Compliance 2.9.1 Electromechanical Coupling Factor 2.9.2 Young´s Modulus 2.9.3 Dielectric Dissipation Factor 2.9.4 Piezoelectric Frequency Constant 2.10 Materials Used for Piezoelectricity 2.10.1 Ceramics Piezoelectric Materials 2.10.2 Polymer Piezoelectric Materials 2.10.3 Composite Piezoelectric Materials 2.10.4 Single Crystal Piezoelectric 2.10.5 Thin Films Piezoelectric Materials 2.10.6 Piezoelectric Material Properties 2.10.7 Electric Behavior 2.10.8 Dielectric Behavior 2.10.9 Elasticity Behavior 2.10.10 Electromechanical Behavior 2.10.11 Coupling Coefficient 2.10.12 Material Damping 2.10.13 Mechanical Loss 2.10.14 Sound Velocity 2.10.15 Acoustic Impedance 2.10.16 Two-port Description 2.11 Piezoelectric Material Parameter 2.11.1 Temperature 2.11.2 Accuracy/Linearity 2.11.3 Resolution 2.11.4 Stiffness 2.11.5 Resonant Frequency 2.11.6 Mechanical Amplification 2.11.7 Quality Factor 2.11.8 Bandwidth 2.11.9 Frequency Constant 2.11.10 Humidity 2.11.11 Load Ratings 2.11.12 Vacuum 2.12 Manufacturing of Piezoelectric Components 2.12.1 Bulk Ceramics: Disks, Rings, Plates 2.12.2 Benders: Unimorphs and Bimorphs-Actuators and Sensors 2.12.3 Multilayer Actuators 2.12.4 Thin Films for Piezo-MEMS 2.13 Difference Between Piezoelectric and Electrostrictive Materials 2.14 Applications of Piezoelectric Devices 2.14.1 Aero Industries 2.14.2 Marine Industries 2.14.3 Automobiles 2.14.4 Electrical and Electronics 2.14.5 Biomedical 2.14.6 Energy Harvest 2.14.7 Household and Other Application 2.15 Advantages of Piezoelectric Materials 2.16 Limitations of Piezoelectric Materials 2.17 Summary and Future Prospects References Chapter 3: Nanomaterials 3.1 Introduction to Nanoscale World 3.2 History of Nanotechnology 3.3 Can We Make Small Devices? 3.4 Size Effects 3.5 Properties of Nanomaterials 3.5.1 Structure Properties 3.5.2 Thermal Properties 3.5.3 Mechanical Properties 3.5.4 Chemical Properties 3.5.5 Optical Properties 3.5.6 Electrical Properties 3.5.7 Magnetic Properties 3.6 Classification of Nanomaterials 3.6.1 Classification on the Basis of Dimension 3.6.1.1 Zero-Dimension (0-D) 3.6.1.2 One-Dimensional (1D) 3.6.1.3 Two-Dimensional (2D) 3.6.1.4 Three-Dimensional (3D) 3.7 Synthesis of Nanomaterials 3.7.1 Gas-Phase Processes 3.7.2 Liquid-Phase Processes 3.7.3 Solid-Phase Processes 3.8 Classification Based on Composition 3.8.1 Carbon-Based Materials 3.8.1.1 Graphene 3.8.1.2 Fullerene 3.8.1.2.1 Structure of Fullerene 3.8.1.2.2 Synthesis of Fullerene 3.8.1.2.3 Properties of Fullerene 3.8.1.2.4 Applications 3.8.1.3 Carbon Nanotube 3.8.1.3.1 Synthesis of CNT 3.8.1.3.2 Classification of CNT 3.8.1.3.3 Properties of CNT 3.8.1.3.4 Application of CNTs 3.8.1.4 Other Forms of Carbon-Based Nanomaterials 3.8.1.5 Metal-Based Nanomaterials 3.8.1.5.1 Synthesis of Some Metal-Based Nanomaterials 3.8.1.6 Polymer-Based Nanomaterials 3.8.1.6.1 Synthesis of Dendrimer 3.8.1.6.2 Applications 3.8.1.6.3 Nanocomposites 3.8.1.6.4 Metal Matrix Nanocomposites (MMNC) 3.8.1.6.5 Ceramic Matrix Nanocomposites (CMNC) 3.8.1.6.6 Polymer Matrix Nanocomposites (PMNC) 3.8.1.6.7 Synthesis of Nanocomposite 3.8.1.6.8 Application of Nanocomposite 3.8.1.7 Nanoporous Materials 3.8.1.7.1 Synthesis of Porous Materials 3.8.1.7.2 Applications of Nanoporous Materials 3.9 Emerging Application of Nanomaterials 3.9.1 Aero Industries 3.9.2 Automotive and Naval Industry 3.9.3 Electronic Industry 3.9.4 Medical Industries 3.9.5 Energy Harvest Industries 3.9.6 Food Industries 3.9.7 Textile Industries 3.9.8 Household Application 3.9.9 Others 3.10 Current Problems/Difficulties Associated With Nanomaterials 3.11 Opportunities and Challenges References Chapter 4: Magnetostrictive Materials 4.1 Magnetostrictive Materials 4.2 History of Magnetostrictive Materials 4.3 Mechanism of Magnetostrictive Effect 4.4 Magnetostrictive Sensors Construction and Working 4.5 Electromagnetic Properties 4.5.1 Permittivity 4.5.2 Permeability 4.5.3 Magnetic Materials 4.5.4 Diamagnetic Material 4.5.5 Paramagnetic Material 4.5.6 Ferromagnetic Material 4.5.7 Antiferromagnetic Material and Ferrimagnetic Material 4.5.8 Curie Temperature 4.5.9 Generation of Magnetic Fields 4.5.10 Hysteresis 4.5.11 Inductance 4.6 Magnetostrictive Effects 4.6.1 Joul Effect 4.6.2 Villari Effect 4.6.3 ΔE Effect 4.6.4 Wiedemann Effect 4.6.5 Matteucci Effect 4.6.6 Barret Effect 4.6.7 Nagaoka-Honda Effect 4.7 Materials for Magnetostrictive Effects 4.7.1 Iron-Based Alloys 4.7.2 Ni-based Alloys 4.7.3 Terfenol-D 4.7.4 Metglas 4.7.5 Ferromagnetic Shape Memory Alloys 4.7.6 Other Materials 4.8 Material Behavior 4.8.1 Magnetic Anisotropy 4.8.2 Mechanical Behaviors 4.9 Kinetics in Magnetostrictive Operation 4.10 Potential Applications 4.10.1 Magnetostriction in Mechanical Industries 4.10.2 Magnetostriction in Aero-Industries 4.10.3 Magnetostriction in Automotive Industries 4.10.4 Magnetostriction in Biomedical Industries 4.10.5 Magnetostriction in Construction Industries 4.10.6 Magnetostriction in Energy Harvesting Materials 4.10.7 Magnetostrictive Materials in Other Industries 4.11 Advantages/Disadvantages of MS Materials 4.12 Summary References Chapter 5: Chromogenic Materials 5.1 Introduction 5.2 History of Chomogenic Materials 5.3 Concept of Chromogenic Materials 5.4 Classification of Chromogenic Materials 5.5 Photochromic Materials 5.5.1 Mechanism of Photochromic Materials 5.5.2 Materials Used in Photochromic Materials 5.5.3 Limitations of Photochromic Glasses 5.5.4 Applications of Photochromic Materials 5.6 Thermochromic and Thermotropic Materials 5.6.1 Mechanism in Thermochromic Materials 5.6.2 Materials used in Thermochromic Materials 5.6.3 Advantages and Limitations of Thermochromic Materials 5.6.4 Applications 5.7 Electrochromic Materials 5.7.1 Mechanism of Electrochromic Materials 5.7.2 Materials Used 5.7.3 Applications 5.8 Gasochromic Materials 5.8.1 Mechanism of Gasochromic Materials 5.8.2 Applications of Gasochromic Materials 5.9 Mechanochromic/Piezochromicmaterials 5.9.1 Mechanism of Mechanochromism in Materials 5.9.2 Materials Used 5.9.3 Applications 5.10 Chemochromic Materials 5.10.1 Applications 5.10.2 Limitations 5.11 Biochromic Materials 5.11.1 Application 5.12 Magnetochromic Materials 5.12.1 Applications 5.13 Phosphorescent Materials 5.14 Ionochromic 5.15 Vapochromism 5.16 Radiochromism 5.17 Sorptiochromism 5.18 Aggregachromism 5.19 Chronochromism 5.20 Concentratochromism 5.21 Cryochromism 5.22 Summary References Chapter 6: Smart Fluid 6.1 Introduction 6.2 Electro-Rheological fluid 6.2.1 Materials Used in ER Fluid 6.2.2 Preparation of ER Fluids 6.2.3 Strengthening Mechanisms of Smart Fluid 6.2.4 Giant ER 6.2.5 Microstructure and Properties 6.2.6 Modes of ER Fluid 6.2.7 Applications 6.2.7.1 Automobile Application 6.2.7.2 Electronic Industries 6.2.7.3 Other Applications 6.2.8 Advantages/Disadvantages 6.3 Magneto-Rheological Fluid 6.3.1 Materials Used in MR fluid 6.3.2 Preparation of MR fluid 6.3.3 Mechanism of Strengthening of MR Fluid 6.3.4 Microstructure and Properties of MR Fluid 6.3.5 Typical Modes of Application of MR Fluid 6.3.6 Applications 6.3.6.1 Automobile and Heavy Machinery Industries 6.3.6.2 Military and Defense Industries 6.3.6.3 Biomedical Industries 6.3.6.4 Other Industries 6.3.7 Advantages and Disadvantages of MR Fluid 6.4 Ferrofluid 6.4.1 Mechanism 6.4.2 Preparation of Ferrofluid 6.4.3 Applications 6.4.3.1 Aero-Industries 6.4.3.2 Electronics Engineering 6.4.3.3 Medical Applications 6.4.3.4 Other Industries 6.5 Magneto-rheological Elastomers 6.5.1 Materials Used 6.5.2 Preparation of MRE 6.5.3 Application 6.6 Electro-Conjugate Liquids 6.6.1 Application 6.7 Photo-Rheological Fluid 6.7.1 PR Fluid Preparation 6.7.2 Applications 6.8 Summary References Chapter 7: Superalloys 7.1 Superalloy 7.2 History of Superalloys 7.3 Basic Metallurgy of Superalloys 7.4 Strengthening Mechanisms of Superalloys 7.4.1 Solid Solution Strengthening 7.4.2 Precipitation Strengthening 7.4.3 Oxide Dispersion Strengthening 7.4.4 Grain Boundary Strengthening 7.4.5 Antiphase Boundary Strengthening 7.5 Types of Superalloys 7.5.1 Ni-based Superalloys 7.5.1.1 Phases of Ni-based Superalloys 7.5.1.2 Properties of Ni-based Superalloys 7.5.2 Co-based Superalloys 7.5.2.1 Phases of Co-based Superalloys 7.5.3 Fe-based Superalloys 7.5.3.1 Phases of Fe-based Superalloys 7.6 Single-crystal Superalloys 7.7 Processing of Superalloys 7.7.1 Casting and Forging 7.7.2 Powder Metallurgy Process 7.7.3 Additive Manufacturing 7.7.4 Directional Solidification Process 7.7.5 Single Crystal Growth 7.7.6 Post-fabrication Processing 7.8 Problem Persist on Prepared Superalloy 7.8.1 Oxidation Effects 7.8.2 Hot Corrosion Effects 7.9 Coating for Superalloy 7.9.1 Thermal Barrier Coatings 7.9.2 Pack Cementation Process 7.9.3 Bond Coats 7.9.3.1 Auminides Bond Coats 7.9.3.2 Pt-Aluminides Bond Coats 7.9.3.3 MCrAlY Bond Coats 7.10 Applications of Superalloys 7.10.1 Gas Turbine Engines 7.10.2 Turbine Blades 7.10.3 Turbine Discs 7.10.4 Turbine Nozzle Guide Vanes 7.10.5 Turbochargers 7.10.6 Combustion Cans 7.10.7 Steam Turbines and Nuclear Application 7.10.8 Aero and Land Turbines 7.10.9 Oil and Gas Industry 7.10.10 Engine of Y2K Superbike 7.10.11 Pressurized Water Reactor Vessel Head 7.10.12 Reactor Vessel 7.10.13 Tube Exchanger 7.10.14 Ti-Tubed Salt Evaporator for Table Salt 7.10.15 Casting Shell 7.11 Summary References Chapter 8: Bulk Metallic Glass 8.1 Introduction on BMG 8.2 History on BMG 8.3 Mechanism of BMG Formation 8.4 Thermodynamic and Kinetic Aspects of Glass Formation in Metallic Liquids 8.5 Empirical Rules 8.6 BMG Structure 8.7 Dynamics of BMG Structure Formation 8.8 Plasticity or Brittleness 8.9 Classification of BMG 8.9.1 Metal-Metal-Type Alloys 8.9.2 Metal-Metalloid-Type Alloys 8.9.3 Pd-Metalloid-Type Alloys 8.10 Processing of Metallic Glasses 8.10.1 Liquid State Processes 8.10.1.1 Direct Casting 8.10.1.2 Rapid Solidification Processing 8.10.1.3 Arc Melting and Drop/Suction Casting 8.10.1.4 Centrifugal Casting Method 8.10.1.5 Thermoplastic Forming 8.10.1.6 Extrusion 8.10.1.7 Rolling 8.10.1.8 Blow Molding 8.10.2 Vapor Deposition Process 8.10.2.1 Physical Vapor Deposition (PVD) 8.10.2.2 Chemical Vapor Deposition (CVD) 8.10.3 Solid-State Processes 8.10.3.1 Mechanical Alloying 8.10.3.2 Additive Manufacturing 8.10.3.3 Spark Plasma Sintering 8.10.3.4 Lithography Technique 8.11 Fundamental Characteristics of BMG Alloys 8.11.1 Mechanical Properties 8.11.2 Tribological Properties 8.11.3 Magnetic Properties 8.11.4 Chemical Properties 8.11.5 Electrical Property 8.12 Forming and Jointing of BMG 8.13 Metallic Glass Foam 8.14 Metallic Glass Coatings 8.15 Application 8.15.1 Aerospace Industries 8.15.2 Automobiles Industries 8.15.3 Electrical and Electronic Industries 8.15.4 Biomedical Industries 8.15.5 Other Applications 8.16 Summary References Chapter 9: High Entropy Materials 9.1 Introduction 9.2 High Entropy Alloys 9.3 Historical Development of High Entropy Alloy 9.4 The Key Concept of Multicomponent HEA 9.5 Thermodynamics of Solid Solution in HEA 9.6 Core Effects of HEA 9.6.1 The High Entropy Effect 9.6.2 The Lattice Distortion Effect 9.6.3 The Sluggish Diffusion Effect 9.6.4 The `Cocktail´ Effect 9.7 Transformations in HEA 9.8 Phase Selection Approach in HEA 9.9 Fabrication Routes of HEA 9.9.1 HEA Preparation by Liquid-State Route 9.9.2 HEA Preparation by Solid-State Route 9.9.3 HEA Preparation by Gas-State Route 9.9.4 HEA Preparation by Electrochemical Process 9.9.5 Additive Manufacturing Process 9.10 Strengthening Mechanisms 9.10.1 Strain Hardening 9.10.2 Grain-Boundary Hardening 9.10.3 Solid-Solution Hardening 9.10.4 Precipitation Hardening 9.11 High-Entropy Superalloys (HESA) 9.12 High-Entropy Bulk Metallic Glasses 9.13 Light Materials HEAs 9.14 High-Entropy Flexible Materials 9.15 High-Entropy Coatings 9.16 Typical Properties of HEA 9.16.1 Strength and Hardness 9.16.2 Wear Resistance 9.16.3 Fatigue 9.16.4 Chemical Properties 9.16.5 Electrical Properties 9.16.6 Thermal Properties 9.16.7 Magnetic Properties 9.16.8 Hydrogen Storage Properties 9.16.9 Irradiation Properties 9.16.10 Diffusion Barrier Properties 9.17 Difference between BMG and HEA 9.18 Complex Concentrated Alloys (CCAs), Multi-Principal Element Alloys (MPEAs) 9.19 Application of HEA 9.19.1 Automobile Industries 9.19.2 Aero-Vehicle Industries 9.19.3 Machineries 9.19.4 Nuclear Application 9.19.5 Electrical and Electronics 9.19.6 Biomedical Applications 9.19.7 Other Applications 9.20 High Entropy Ceramics 9.21 High Entropy Polymer 9.22 High Entropy Hybrid 9.23 Summary References Chapter 10: Self-Healing Materials 10.1 Introduction and Overview 10.2 History of Self-Healing Materials 10.3 Types of Self-Healing Processes 10.4 Autonomic Self-Repair Materials 10.5 Non-autonomic Self-Repair Materials 10.6 Materials for Self-Healing Purposes 10.6.1 Self-Healing in Metals 10.6.1.1 Precipitation From Supersaturated Solid Solutions 10.6.1.2 Reinforcement of Metallic Matrices With Shape Memory Alloy Wires 10.6.1.3 Reinforcement of Metallic Matrices with Low Melting Temperature Alloy 10.6.2 Classification of Self-Healing Metals 10.6.3 Proposed Self-Healing Concepts in Metals 10.6.3.1 High-T Precipitation 10.6.3.2 Low-T Precipitation 10.6.3.3 Nano SMA Dispersoids 10.6.3.4 SMA-Clamp and Melt 10.6.3.5 Solder Tubes/Capsules 10.6.3.6 Coating Agent 10.6.3.7 Electro-Healing 10.7 Self-Healing Ceramics 10.8 Self-Healing Polymers 10.8.1 Mechanically Triggered Self-Healing 10.8.2 Ballistic Impact Self-Healing 10.8.3 Thermally Triggered Self-Healing 10.8.4 Optically Triggered Healing 10.8.5 Other Methods for Triggering Healing 10.8.6 Stages of Passive Self-Healing in Polymer 10.8.7 Damage and Healing Theories 10.8.7.1 Percolation Theory of Damage and Healing 10.8.7.2 Fracture and Healing by Bond Rupture and Repair 10.8.7.3 Fracture and Healing of an Ideal Rubber 10.8.7.4 Fracture and Healing of Thermosets 10.8.8 Healing of Polymer-Polymer Interfaces 10.8.9 Fatigue Healing 10.8.10 The Hard-to-Soft Matter Transition 10.8.10.1 Twinkling Fractal Theory of Tg 10.8.10.2 Healing below the Glass Transition Temperature 10.8.10.3 Twinkling Fractal Theory of Yield Stress 10.8.11 Fracture Mechanics of Polymeric Materials 10.8.12 Self-Healing of Thermoplastic Materials 10.8.12.1 Healing by Molecular Interdiffusion Approach 10.8.12.2 Healing by Recombination of Chain-Ends Approach 10.8.12.3 Self-Healing Via Reversible Bond Formation 10.8.12.4 Healing by Photo-Induced Approach 10.8.12.5 Living Polymer Approach 10.8.12.6 Self-Healing by Nanoparticles Approach 10.8.13 Self-Healing of Thermoset Materials 10.8.13.1 Hollow Glass Fiber Systems 10.8.13.2 Based on Microencapsulated Healing System 10.8.13.3 Based on Fatigue Cracks Retardation Self-Healing System 10.8.13.4 Three-Dimensional Microchannel Structure Self-Healing Systems 10.8.13.5 Inclusion of Thermoplastic Additives System 10.8.13.6 Thermally Reversible Cross-Linked Approach 10.8.13.7 Chain Rearrangement Approach 10.8.13.8 Metal-Ion-Mediated Healing Approach 10.8.13.9 Other Approaches of Thermoset Self-Healing Approach 10.9 Self-Healing Coatings 10.10 Self-Healing Hydrogels 10.11 Applications 10.12 Summary References Chapter 11: Self-Cleaning Materials 11.1 What Is Self-Cleaning Property of Materials? 11.2 History of Self-Cleaning Materials 11.3 Classification of Self-Cleaning Materials 11.4 Surface Characteristics of Self-Cleaning Materials 11.4.1 Wettability 11.4.1.1 Young´s Model of Wetting 11.4.1.2 Wenzel´s Model of Wetting 11.4.1.3 Cassie-Baxter´s Model of Wetting 11.4.1.4 Transition between Cassie and Wenzel States 11.4.2 Drag Reduction 11.4.3 Surface Tension and Surface Energy 11.4.4 Surface Roughness and Air Pockets 11.5 Act of Self-Cleaning Surfaces 11.6 Hydrophobic and Superhydrophobic Surfaces 11.6.1 History of Hydrophobic Materials 11.6.1.1 Direction of Hydrophobicity From Nature 11.6.2 Type of Superhydrophobic Surface in Plant Leaves 11.7 Hydrophilic and Superhydrophilic Self-Cleaning Surfaces 11.8 Photocatalysis Self-Cleaning Materials 11.9 Materials Used for Synthesis of Superhydrophobic Surfaces 11.10 Synthesis of Self-Cleaning Surfaces 11.10.1 Microlithography and Nanolithography 11.10.2 Chemical Vapor Deposition 11.10.3 Physical Vapor Deposition (PVD) 11.10.4 Electrochemical Deposition 11.10.5 Electrospinning Method 11.10.6 Wet Chemical Reaction 11.10.7 Templating 11.10.8 Solution Immersion Process 11.10.9 Self-Assembly and Layer-by-Layer Methods 11.10.10 Plasma Treatment 11.10.11 Sol-Gel Method 11.10.12 Flame Treatment 11.10.13 Nanocasting 11.10.14 3D Printing 11.10.15 Fabrication of Hydrophilic Materials 11.10.16 Deposited Molecular Structures 11.10.17 Modification of Surface Chemistry 11.11 Properties of Superhydrophobic Materials 11.12 Other Terminology with Phobic and Philic 11.13 Applications of Self-Cleaning Materials 11.13.1 Aero-Industries 11.13.2 Maritime Industry 11.13.3 Automobile Industries 11.13.4 Electronic Industries 11.13.5 Medical Industries 11.13.6 Textile Industries 11.13.7 Other Industries 11.14 Limitations of Self-Cleaning Materials 11.15 Summary References Chapter 12: Ultralight Materials 12.1 Introduction of Ultralight Materials 12.2 Aerogel 12.2.1 Classification of Aerogel 12.2.2 Fabrication of Aerogel 12.2.2.1 Sol-gel Process 12.2.2.2 3D Printing 12.2.2.3 Properties of Aerogel 12.2.2.4 Applications of Aerogel 12.3 Aerographite 12.3.1 Synthesis of Aerographite 12.3.2 Properties of Aerographite 12.3.3 Applications of Aerographite 12.4 Aerographene 12.4.1 Synthesis 12.4.2 Properties 12.4.3 Applications 12.5 3D Graphene 12.5.1 Synthesis of 3D graphene 12.5.2 Template-Assisted Processes 12.5.2.1 Chemical Vapor Deposition (CVD) 12.5.2.2 Carbonization of Polymeric Structure 12.5.2.3 Lithography 12.5.2.4 Template-assisted Freeze-Drying 12.5.2.5 Template-assisted Hydrothermal Process 12.5.2.6 Powder Metallurgy Synthesis 12.5.3 Template-Free Processes 12.5.3.1 Sugar Blowing Technique 12.5.3.2 Plasma-enhanced CVD (PE-CVD) 12.5.3.3 Assembly of GO by Reduction Process 12.5.3.4 Freeze-Drying 12.5.3.5 Cross-linking Assembly 12.5.3.6 3D Printing 12.5.4 Factors Influencing the Synthesis 12.5.5 Properties of 3D Graphene 12.5.6 Application 12.6 Carbyne 12.6.1 History of Development 12.6.2 Synthesis of Carbyne 12.6.2.1 Polycondensation of Carbon Suboxide with Bis(Bromomagnesium) Acetylide 12.6.2.2 Dehydrohalogenation of Polymers 12.6.2.3 Dehydrogenation of Polyacetylene 12.6.2.4 Synthesis of Carbyne in Plasma 12.6.2.5 Laser-induced Sublimation of Carbon 12.6.2.6 Deposition of Carbyne from an Electric Arc 12.6.2.7 Ion-assisted Condensation of Carbyne 12.6.3 Properties 12.6.4 Applications of Carbyne 12.7 Microlattice Materials 12.7.1 Metallic Microlattice 12.7.1.1 Manufacturing of Metallic Lattice Structure 12.7.1.2 Properties 12.7.1.3 Applications of Metallic Microlattice 12.7.2 Polymer Microlattice 12.7.2.1 Applications of Polymer Microlattice 12.7.3 Ceramic MicroLattice 12.7.4 Composite Microlattice 12.8 Foams 12.8.1 Metallic Foams 12.8.1.1 Classification of Metallic Foam 12.8.1.2 Synthesis of Metallic Foam 12.8.1.2.1 Powder Metallurgy (P/M) Rout 12.8.1.2.2 Liquid Metallurgy Route 12.8.1.3 Foaming by Rapid Prototyping Technique 12.8.1.4 Electro-Deposition Technique 12.8.1.5 Vapor Deposition Technique 12.8.1.6 Based on Polymer Sponge Structure 12.8.1.7 Properties 12.8.1.8 Application 12.8.2 Ceramic Foam 12.8.2.1 Synthesis 12.8.2.1.1 Direct Foaming Technique 12.8.2.1.2 Replica Technique 12.8.2.1.3 Sacrificial Template Method 12.8.2.2 Polymeric Foam 12.8.2.2.1 Classification of Polymer Foams 12.8.2.2.2 Synthesis of Polymeric Foam 12.8.2.3 Application 12.9 Summary and Perspectives References Chapter 13: Biomaterials 13.1 Introduction 13.2 History of Biomaterials 13.3 The Body Environment 13.4 Governing Factors of Biomaterials 13.4.1 Biocompatibility 13.4.2 Wettability 13.4.3 Porosity 13.4.4 Stability 13.5 Classification of Biomaterials 13.5.1 Metallic Biomaterials 13.5.1.1 Materials in Metallic Biomaterials 13.5.1.2 Advantages/Disadvantages of Metallic Biomaterials 13.5.2 Ceramic Biomaterials 13.5.2.1 Materials in Ceramic Biomaterials 13.5.2.2 Advantages and Disadvantages of Ceramic Biomaterials 13.5.3 Polymeric Biomaterials 13.5.3.1 Materials in Polymeric Biomaterials 13.5.3.2 Advantages and Disadvantage of Polymeric Biomaterials 13.5.4 Biocomposite 13.5.4.1 Advantages and Disadvantages of Composite Biomaterials 13.5.5 Biologically Derived Biomaterials 13.5.5.1 Protein 13.5.5.2 Polysaccharide 13.6 Various Synthesis Techniques of Biomaterials 13.6.1 Solvent Casting 13.6.2 Particulate Leaching 13.6.3 Polymer Sponge Replication Method 13.6.4 Gas Foaming 13.6.5 Phase Separation 13.6.6 Freeze Drying 13.6.7 Electrodeposition 13.6.8 Rapid Prototyping 13.7 Surface Modification of Biomaterials 13.7.1 Biocompatible Coating 13.7.2 Surface Treatment 13.8 Summary References Chapter 14: Advanced Plastic Materials 14.1 Introduction to Advanced Plastic 14.2 High-Temperature Plastics 14.2.1 High-Temperature Thermoplastics Structures and Stability 14.2.2 High-Temperature Plastic Materials 14.2.3 Application of High-Temperature Plastic 14.2.4 Advantages and Disadvantages of High-Temperature Plastics Over Metals 14.3 Conducting Plastic 14.3.1 Historical Background 14.3.2 Industrial Market Status 14.3.3 Classification of Conducting Polymer 14.3.4 How Can Polymer Conduct Electricity? 14.3.5 Materials in Conducting Polymer 14.3.6 Preparation of Conducting Polymers 14.3.7 Applications of Conductive Polymer 14.4 Magnetic Plastic 14.4.1 Applications 14.5 Transparent Plastic 14.5.1 Major Factors of Transparency 14.5.2 Transparent Plastic Materials 14.5.3 Influence of Nano-metal Oxides in Polymer Transparency 14.5.4 Application 14.6 Bioplastic 14.6.1 Market Growth of Bioplastic 14.6.2 Biodegradation of Bioplastics 14.6.3 Types of Bioplastics 14.6.3.1 Polysaccharides Bioplastic 14.6.3.2 Proteins Bioplastic 14.6.3.3 Poly(hydroxybutyrate) (PHB) Bioplastic 14.6.3.4 Poly(lactic acid) (PLA) Bioplastic 14.6.3.5 Poly(butylene succinate) (PBS) Bioplastic 14.6.3.6 Poly(trimethylene terephthalate) (PTT) Bioplastic 14.6.3.7 Polyhydroxyalkanoates (PHA) Bioplastic 14.6.3.8 Poly(glycolic acid) (PGA) Bioplastic 14.6.3.9 Poly(caprolactone) (PCL) Bioplastic 14.6.3.10 Poly(butylene succinate-co-terephthalate) (PBST) Bioplastic 14.6.3.11 Poly(butylene adipate-terephthalate) (PBAT) Bioplastic 14.6.3.12 Poly(vinyl alcohol) Bioplastic 14.6.3.13 Bio-PET Bioplastic 14.6.3.14 Bio-PE Bioplastic 14.6.4 Impact of Bioplastic on the Environmental 14.6.5 Applications 14.7 Summary and Future Prospects References Chapter 15: Energy Harvesting and Storing Materials 15.1 Introduction 15.2 Types of Ambient Energy Sources 15.2.1 Photo-Energy Harvest 15.2.1.1 Basic principles of Solar Collector System 15.2.2 Thermal Energy Harvest 15.2.3 Mechanical Energy/Vibrational Energy Harvest 15.2.4 Electromagnetic Energy Harvesting 15.2.5 Electrostrictive Energy Harvesting 15.2.6 Magnetostrictive Energy Harvesters 15.2.7 Chemical Energy 15.2.8 Wind Energy Harvest 15.2.9 Tide Energy 15.2.9.1 Types of Tide Energy to Harvest 15.2.9.1.1 Tidal Stream Turbines 15.2.9.1.2 Archimedes Screws 15.2.9.1.3 Tidal Dams/Barrages 15.2.9.1.4 Floating Structures 15.2.9.1.5 Tidal Kites 15.2.9.1.6 Wave Riding Arms 15.2.9.1.7 Artificially Intelligent Turbines 15.2.9.2 Tidal Energy Generation 15.2.9.3 Advantages and Disadvantages of Tidal Energy 15.3 Energy Storage 15.3.1 Types of Energy Storage 15.3.2 Batteries 15.3.2.1 Lithium-Ion Batteries 15.3.2.2 Lithium-Air Batteries 15.3.2.2.1 Acidic Electrolyte 15.3.2.2.2 Alkaline Aqueous Electrolyte 15.3.2.2.3 Aprotic Electrolyte 15.3.2.3 Lithium-Polymer Battery 15.3.2.4 Sodium-Ion Batteries 15.3.2.5 Magnesium Batteries 15.3.2.6 Zinc-Ion Batteries 15.3.2.7 Zinc-Air Batteries 15.3.2.8 K-Ion Batteries 15.3.2.9 Aluminum-Ion Batteries 15.3.2.10 Nickel-Bismuth Batteries 15.3.2.11 Organic Batteries 15.4 Summary References Chapter 16: Advanced Semiconductor/Conductor Materials 16.1 Supercapacitor 16.2 History of Supercapacitor 16.3 Batteries, Fuel Cells, and Supercapacitors 16.4 Work and Processing of Ultracapacitor 16.4.1 Basic Design 16.4.2 Storage Principles 16.4.3 Potential Distribution 16.4.4 Types of Supercapacitor 16.4.4.1 Electrostatic Double-layer Capacitance 16.4.4.2 Electrochemical Pseudocapacitance 16.4.4.3 Hybrid Capacitors 16.4.5 Electrodes Materials 16.4.5.1 Electrodes for EDLC 16.4.5.2 Electrodes for Pseudocapacitors 16.4.5.3 Electrodes for Hybrid Capacitors 16.4.6 Electrolytes 16.4.7 Separators 16.4.8 Collectors and Housing 16.4.9 Synthesis Approach for Electrode Materials 16.4.9.1 Solgel Method 16.4.9.2 Electro-polymerization/Electrodeposition 16.4.9.3 In Situ Polymerization 16.4.9.4 Direct Coating 16.4.9.5 Chemical Vapour Deposition (CVD) 16.4.9.6 Vacuum Filtration Technique 16.4.9.7 Hydrothermal/Solvothermal Method 16.4.9.8 Coprecipitation Method 16.4.9.9 Dealloying Method 16.4.9.10 Other Synthesis Methods 16.4.10 Selection of Supercapacitor 16.4.11 Comparative analysis of Supercapacitor and Other Storage Devices 16.4.12 Applications 16.4.13 Advantages and Limitations of Supercapacitor 16.5 Superconducting Materials 16.5.1 History of Superconductor 16.5.2 Classification of Superconducting Materials 16.5.2.1 Type I Superconductors 16.5.2.2 Type II Superconductors 16.5.3 Applications of Superconductors 16.6 Advanced Semiconductor Materials 16.6.1 Classification of Semiconductor Materials 16.6.2 Semiconducting Devices 16.6.3 Alloy of II-VI Semiconductors with Magnetic Materials 16.6.4 Alloys of III-V Semiconductors with Ferromagnetic Properties 16.6.5 Polymer Semiconductor Crystals 16.6.6 Oxide Semiconductor 16.6.7 Semiconductor Materials for Magnetoelectronics at Room Temperature 16.6.8 Spintronics and Spintronic Semiconductor Materials 16.6.9 Application of Advanced Semiconducting Materials 16.7 High-mobility Organic Transistors 16.7.1 P-type Semiconductors 16.7.2 n-type Semiconductors 16.8 Summary References Chapter 17: Ultrafine-Grained Materials 17.1 What Is Ultrafine-Grained Materials 17.2 Historical Background to UFG Metals 17.3 Concept on Ultrafine-Grained Materials 17.4 Methods for Producing UFG Materials 17.4.1 Equal-Channel Angular Pressing 17.4.2 High-Pressure Torsion 17.4.3 Accumulative Roll Bonding 17.4.4 Friction Stir Processing (FSP) 17.4.5 Multi-Directional Forging 17.4.6 Cyclic Extrusion and Compression 17.4.7 Repetitive Corrugation and Straightening 17.4.8 Twist Extrusion 17.4.9 Machining 17.5 Role of Grain Size 17.6 Role of Grain Boundaries 17.7 Diffusion along Grain Boundaries 17.8 Influence of Second Phases 17.9 Effect of Internal Stress 17.10 Effect on Mechanical Behavior 17.11 Corrosion Behavior 17.12 Applications 17.13 Summary References Chapter 18: Alloys Based on Intermetallic Compounds 18.1 What Is an Intermetallic Alloy? 18.2 Structure of IMC 18.2.1 Hume-Rothery Phases 18.2.2 Frank-Kasper Phases 18.2.2.1 A15 Phase 18.2.2.2 Laves Phases 18.2.2.3 Sigma Phase 18.2.2.4 Mu Phase 18.2.3 Kurnakov Phases 18.2.4 Zintl Phases 18.2.5 Nowotny Phases 18.2.6 B2 Phase 18.2.7 L12 Phase 18.3 Structure Defects of IMC 18.3.1 Point Defects 18.3.2 Structure of Antiphase Boundaries and Domains 18.3.3 Superlattice Dislocations 18.4 Structure of Grain Boundaries and Brittleness of IMC 18.5 Optical Properties of Intermetallic Compound 18.6 Processing of IMC 18.7 Most Used Intermetallic Compounds 18.7.1 NiAl Intermetallics 18.7.2 FeAl Intermetallics 18.7.3 TiAl Intermetallics 18.7.4 CrAl Intermetallics 18.7.5 NiTi Intermetallics 18.7.6 Compounds Containing Lanthanide Metals and Yttrium 18.8 Application Fields of IMC Alloys 18.9 Summary References Chapter 19: Metal-Organic Frameworks 19.1 What Is Metal-Organic Framework 19.2 History and Background of MOF 19.3 Structure of MOF 19.4 Synthesis of MOF 19.4.1 Solvothermal or Hydrothermal Techniques 19.4.1.1 Microwave-Assisted Synthesis 19.4.1.2 Sonochemical Synthesis 19.4.1.3 Mechanochemical Synthesis 19.4.1.4 Electrochemical Synthesis 19.4.1.5 Surfactant-Assisted Synthesis 19.4.1.6 Microfluidic MOF Synthesis 19.5 Post-Synthetic Modification 19.6 Separation With MOF Materials 19.6.1 Adsorptive Separation 19.6.2 Membrane Separation 19.7 MOFs for Gas-Phase Adsorptive Separations 19.7.1 Selective Adsorptions and Separations of Gas 19.7.1.1 Carbon Dioxide (CO2) 19.7.1.2 Oxygen (O2) 19.7.1.3 Hydrogen (H2) 19.7.1.4 Gaseous Olefin and Paraffin 19.7.1.5 Harmful and Unsafe Gases 19.7.1.6 Nobel Gases and Others 19.7.2 Selective Adsorptions and Separations of Chemical in Vapor Phase 19.7.2.1 Small Solvent Molecules 19.7.2.2 C8 Alkylaromatic Isomers 19.7.2.3 Aliphatic Isomers 19.7.2.4 Others 19.8 MOFs for Liquid-Phase Adsorptive Separations 19.8.1 Selective Adsorptions and Separations of Chemically Different Species 19.8.1.1 Organic Molecules with Different Properties/Functional Group 19.8.1.2 Organic Molecules With Different Shape and Size 19.8.1.3 Organosulfur Compound 19.8.1.4 Cations and Anions 19.8.2 Selective Adsorptions and Separations of Structural Isomer 19.8.2.1 Aromatic Compound 19.8.2.2 Aliphatic Compound 19.8.3 Selective Adsorptions and Separations of Stereoisomer 19.8.3.1 Enantiomers (Enantio-Separation) 19.8.3.2 Cis-Trans Isomer 19.9 MOFs Membrane-Based Separations 19.9.1 Separations with MoF Thin Film 19.9.1.1 H2 Separation 19.9.1.2 CO2 Separation 19.9.1.3 Other Gas and Vapor Separation 19.9.2 Separation with Mixed-Matrix MOF Membrane 19.9.2.1 Gas Separation 19.9.2.2 Liquid Separation 19.10 Potential Application of MOF 19.10.1 As a Catalyst 19.10.2 For Pollution Control 19.10.3 MOF Sensors 19.10.4 Energy Storage Materials 19.10.5 Biomedical Application 19.10.6 Other Applications 19.11 Summary References Chapter 20: Additive Manufacturing Materials 20.1 Introduction 20.2 Additive Manufacturing Market 20.3 Additive Manufacturing Advantages Over Conventional Manufacturing 20.4 Steps Involved in AM Processes 20.4.1 Step 1: Conceptualization and CAD Designing a 3D Model 20.4.2 Step 2: Conversion of Digital Design of STL File 20.4.3 Step 3: Slicing Using a 3D Printer Slicer Software and Manipulation of STL File 20.4.4 Step 4: Machine Parametric Setup 20.4.5 Step 5: Build 20.4.6 Step 6: Removal of Product 20.4.7 Step 7: Post-Processing 20.5 Classification of AM Processes 20.5.1 Material Extrusion 20.5.2 VAT Photopolymerization 20.5.3 Material Jetting 20.5.4 Powder Bed Fusion 20.5.5 Directed Energy Deposition 20.5.6 Binder Jetting 20.5.7 Sheet Lamination 20.6 Materials for AM Processes 20.6.1 Metal 20.6.2 Ceramic 20.6.3 Polymer 20.6.4 Composite 20.6.5 Intermetallic Compound 20.6.6 High Entropy Alloys and Bulk Metallic Glass 20.7 Processability in AM 20.8 4D Printing 20.9 5D Printing 20.10 Differences Between 3D, 4D, 5D Printing, and Other 20.11 Advantages and Limitations of Additive Manufacturing 20.12 Applications of AM 20.12.1 Aero Industries 20.12.2 Automobile 20.12.3 Electrical Industries 20.12.4 Biomedical Industries 20.12.5 Energy Harvesting Industries 20.12.6 Other Industries 20.13 Summary References Index