ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Advanced Joining Technologies (Advanced Materials Processing and Manufacturing)

دانلود کتاب فن آوری های پیوستن پیشرفته (فرآوری و ساخت مواد پیشرفته)

Advanced Joining Technologies (Advanced Materials Processing and Manufacturing)

مشخصات کتاب

Advanced Joining Technologies (Advanced Materials Processing and Manufacturing)

ویرایش: 1 
نویسندگان: , ,   
سری:  
ISBN (شابک) : 1032356359, 9781032356358 
ناشر: CRC Press 
سال نشر: 2024 
تعداد صفحات: 269 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 17 مگابایت 

قیمت کتاب (تومان) : 54,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 3


در صورت تبدیل فایل کتاب Advanced Joining Technologies (Advanced Materials Processing and Manufacturing) به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب فن آوری های پیوستن پیشرفته (فرآوری و ساخت مواد پیشرفته) نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی درمورد کتاب به خارجی



فهرست مطالب

Cover
Half Title
Series Page
Title Page
Copyright Page
Table of Contents
Preface
About the Editors
List of Contributors
Chapter 1 Underwater Explosive Welding of Tin and Nickel Plates and Characterization of their Interfaces
	1.1 Introduction
	1.2 Principles of Underwater Explosive Welding
	1.3 Design Considerations for Experimentation of Underwater Explosive Welding
	1.4 Methodology Adopted to Weld and Characterize Metal Plates
	1.5 Discussion on Welded Plates and their Characterization
	1.6 Conclusion
	References
Chapter 2 Advances in Gas Tungsten and Gas Metal Arc Welding – A Concise Review
	2.1 Introduction
	2.2 Advancements in Gas Tungsten Arc Welding
		2.2.1 Cold Wire Gas Tungsten Arc Welding Process
		2.2.2 Pulsed-Current Gas Tungsten Arc Welding (PCGTAW)
		2.2.3 Variable-Polarity GTAW
		2.2.4 Ultra High Frequency of Pulsed Gas Tungsten Arc Welding (UHFP-GTAW)
		2.2.5 Hot-Wire Gas Tungsten Arc Welding (HW-GTAW) Process
		2.2.6 Twin TIG
		2.2.7 Keyhole – GTAW Welding
		2.2.8 Multicathode GTAW
		2.2.9 Active GTAW (A-TIG)
		2.2.10 Advanced A-TIG
		2.2.11 Flux-Bounded TIG Welding (FBTIG)
		2.2.12 Buried Arc GTAW
		2.2.13 Ultrasonic GTAW (U-TIG)
		2.2.14 TOPTIG
		2.2.15 TIPTIG
	2.3 Advancements in Gas Metal Arc Welding
		2.3.1 Pulsed-Current Gas Metal Arc Welding
	2.4 DP-GMAW
	2.5 High-Frequency Pulsed Gas Metal Arc Welding
	2.6 Ultra-High-Frequency Pulse Metal-Inert Gas Welding (UFP-MIG)
		2.6.1 Cold Metal Transfer-GMAW
		2.6.2 PCMT-GMAW
		2.6.3 CW-GMAW
		2.6.4 DCW-GMAW
		2.6.5 Hot-Wire GMAW
	2.7 Double-Electrode Gas Metal Arc Welding (DE-GMAW)
	2.8 Conclusion
	References
Chapter 3 Welding of AISI 304 Steel Using TIG and Pulse TIG: Weld Deposition and Relative Joint Strength Comparisons
	3.1 Introduction
	3.2 Materials and Methods
	3.3 Results and Discussion
		3.3.1 Weld Deposition
		3.3.2 Relative Joint Strength
	3.4 Conclusion
	References
Chapter 4 Processing of Bimetallic Steel–Copper Joint by Beam Welding
	4.1 Introduction
	4.2 Laser Beam Welding of SS-Copper
	4.3 Electron Beam Welding of Steel – Copper
	4.4 Conclusion
	References
Chapter 5 Studies on Cold Metal Transfer Welding of Aluminum 5083 Alloy to Pure Titanium
	5.1 Introduction
	5.2 Experimental Methodology
		5.2.1 Materials and Mechanical Characterization
		5.2.2 Microstructure Analysis
		5.2.3 SEM and EDS Analysis
	5.3 Results and Discussion
		5.3.1 Ultimate Tensile Strength
		5.3.2 Microhardness
		5.3.3 SEM and EDS Analysis of the Welded Sample
		5.3.4 Fractography
	5.4 Conclusion
	References
Chapter 6 Diffusion Bonding for Dissimilar Metals and Alloys
	6.1 Introduction
	6.2 Diffusion Mechanisms
		6.2.1 Vacancy Mechanism
		6.2.2 Ring Mechanism
		6.2.3 Interstitial Mechanism
		6.2.4 Exchange Mechanism
	6.3 Process Variables
		6.3.1 Bonding Temperature
		6.3.2 Bonding Pressure
		6.3.3 Bonding Time
		6.3.4 Bonding Environment
	6.4 Challenges in Joining Dissimilar Metals by Diffusion Bonding
		6.4.1 Use of Interlayers in Diffusion Bonding
	6.5 Approaches Used to Improve the Effectiveness of Dissimilar Metal Bonding
		6.5.1 Diffusion Bonding Using Pressure Pulses
		6.5.2 Friction-Assisted Diffusion Bonding
		6.5.3 Self-Compressing Diffusion Bonding
		6.5.4 Friction Stir Welding-Assisted Diffusion Bonding
	6.6 Conclusion
	References
Chapter 7 Friction Stir Welding: A Solution for Dissimilar Material Joining
	7.1 Introduction
	7.2 Major Parameters
		7.2.1 Rotational Speed
		7.2.2 Traverse Speed
		7.2.3 Dwell Time
		7.2.4 Tilt Angle
		7.2.5 Advancing Side
		7.2.6 Retreating Side
		7.2.7 Tool Offset
		7.2.8 Shoulder Diameter
		7.2.9 Pin Profile
		7.2.10 Pitch Ratio
	7.3 FSW of Dissimilar Materials
		7.3.1 Dissimilar Aluminum Alloys
		7.3.2 Aluminum to Non-aluminum Alloys
		7.3.3 Aluminum to Non-metals
		7.3.4 Miscellaneous
	7.4 Major Issues
	7.5 Future Scope
	7.6 Summary
	Acknowledgements
	References
Chapter 8 Joining of Metallic Materials Using Microwave Hybrid Heating
	8.1 Introduction
	8.2 Fundamentals of Microwave Theory
		8.2.1 Permittivity and Permeability
		8.2.2 Maxwell\'s Equations
		8.2.3 Lambert\'s Law
	8.3 Heating Mechanisms in Microwave Processing
		8.3.1 For Non-magnetic Materials
		8.3.2 For Magnetic Materials
	8.4 Modes of Heating
		8.4.1 Conventional Heating
		8.4.2 Microwave Direct Heating (MDH)
		8.4.3 Microwave Hybrid Heating (MHH)
		8.4.4 Microwave-Selective Heating (MSH)
		8.4.5 Selective Microwave Hybrid Heating
	8.5 Microwave Joining
		8.5.1 Development of Stainless-Steel Joints Using Microwave Hybrid Heating
	8.6 Recent Advances in Microwave Processing of Metallic Materials
		8.6.1 Microwave Sintering
		8.6.2 Microwave Cladding
		8.6.3 Microwave Drilling
		8.6.4 Microwave Casting
		8.6.5 Simulation of Microwave Processing
	8.7 Summary
	8.8 Future Scope of Microwave Processing
		8.8.1 Challenges
		8.8.2 Opportunities
	References
Chapter 9 Hybrid Welding Technologies
	9.1 Introduction
	9.2 Power Source Hybridization
		9.2.1 Laser-Arc Hybrid Welding
		9.2.2 Laser-FSW Hybrid Welding
		9.2.3 Laser-USW Hybrid Welding
		9.2.4 Other Hybrid Welding Techniques
	9.3 Material Hybridization
	9.4 Summary
	References
Chapter 10 Clinching: A Deformation-Based Advanced Joining Technique
	10.1 Introduction
		10.1.1 Clinching
		10.1.2 Types of Clinching
	10.2 Variants of Clinching
		10.2.1 Flat Clinching
		10.2.2 Hole Clinching
		10.2.3 Die-less Clinching
		10.2.4 Rectangular Clinching
		10.2.5 Roller Clinching
		10.2.6 Laser Shock Clinching
		10.2.7 Hydro Clinching
		10.2.8 Injection Clinching
		10.2.9 Friction Stir Clinching
		10.2.10 Laser-Assisted Clinching
		10.2.11 Shear Clinching
		10.2.12 Fixed and Extensible Die Clinching
		10.2.13 Double-Stroke Clinching
	10.3 Clinching-Based Hybrid Joining
		10.3.1 Clinch Bonding
		10.3.2 Resistance Spot Clinching (RSC)
	10.4 Factors Affecting Clinched Joint Formation
	10.5 Mechanical and Metallurgical Characteristics of Clinched Joints
	10.6 Failure Modes of Clinched Joint
	10.7 Numerical Modeling of the Clinching Technique
		10.7.1 Modeling
		10.7.2 Meshing
		10.7.3 Remeshing Method
		10.7.4 Contact Modeling
	10.8 Conclusion and Future Scope
	References
Chapter 11 Systematic Study of Digital Twins for Welding Processes
	11.1 Introduction
	11.2 Literature Review
		11.2.1 Welding Process
		11.2.2 Digital Twin
	11.3 Digital Twin in Welding
		11.3.1 Weld Joint Expansion and Penetration Regulation of Gas Tungsten Arc Welding Process Using a Digital Twin
		11.3.2 Digital Twin-Based Process Monitoring in Laser-Welded Blanks of Light Metal Blanks
		11.3.3 Sequence Optimization of Spot Welding for Geometry Assurance Digital Twin
		11.3.4 Digital Twin-Based Simulation and Optimization of Robotic Arc Welding Station
	11.4 Conclusion
	References
Chapter 12 Application of Machine Learning Techniques for Fault Detection in Friction Stir-Based Advanced Joining Techniques
	12.1 Introduction
	12.2 Artificial Intelligence in FSW and FSP
	12.3 Fault Detection Approach in FSW or FSP Using Artificial Intelligence
		12.3.1 Digital Twin Modeling of FSW Process
		12.3.2 Surface Defect Detection in FSW Joints Using a Machine Learning Approach
		12.3.3 Artificial Intelligence for Detecting Surface Defects in Friction Stir-Welded Joints
	12.4 Summary
	References
Chapter 13 Friction Stir Welding Characteristics of Dissimilar/Similar Ti-6Al-4V-Based Alloy and its Machine Learning Techniques
	13.1 Introduction
	13.2 Friction Stir Welding
	13.3 Conventional Optimization Techniques
	13.4 Machine Learning
	13.5 Advantages of Machine Learning in FSW
	13.6 Conclusion
	References
Index




نظرات کاربران