دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Vasilev. Ivan
سری:
ISBN (شابک) : 9781789956177, 178995617X
ناشر: Packt Publishing
سال نشر: 2019
تعداد صفحات: 0
زبان: English
فرمت فایل : EPUB (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 54 مگابایت
کلمات کلیدی مربوط به کتاب یادگیری عمیق پیشرفته با Python: طراحی و پیاده سازی راه حل های پیشرفته هوش مصنوعی با استفاده از TensorFlow و PyTorch: هوش مصنوعی، یادگیری ماشین، شبکه های عصبی (علوم کامپیوتر)، پایتون (زبان برنامه کامپیوتری)
در صورت تبدیل فایل کتاب Advanced deep learning with Python: design and implement adavnced next-generation AI solutions using TensorFlow and PyTorch به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب یادگیری عمیق پیشرفته با Python: طراحی و پیاده سازی راه حل های پیشرفته هوش مصنوعی با استفاده از TensorFlow و PyTorch نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب یک راهنمای در سطح متخصص برای تسلط بر انواع شبکه های عصبی با استفاده از اکوسیستم پایتون است. با مثالهای عملی، مهارتهای ساختن سیستمهای یادگیری عمیقتر، سریعتر و کارآمدتر را به دست خواهید آورد. تا پایان این کتاب، شما از آخرین پیشرفت ها و تحقیقات جاری در حوزه یادگیری عمیق مطلع خواهید شد.
This book is an expert-level guide to master the neural network variants using the Python ecosystem. You will gain the skills to build smarter, faster, and efficient deep learning systems with practical examples. By the end of this book, you will be up to date with the latest advances and current researches in the deep learning domain.
Cover Title Page Copyright and Credits About Packt Contributors Table of Contents Preface Section 1: Core Concepts Chapter 1: The Nuts and Bolts of Neural Networks The mathematical apparatus of NNs Linear algebra Vector and matrix operations Introduction to probability Probability and sets Conditional probability and the Bayes rule Random variables and probability distributions Probability distributions Information theory Differential calculus A short introduction to NNs Neurons Layers as operations NNs Activation functions The universal approximation theorem Training NNs Gradient descent Cost functions Backpropagation Weight initialization SGD improvements Summary Section 2: Computer Vision Chapter 2: Understanding Convolutional Networks Understanding CNNs Types of convolutions Transposed convolutions 1×1 convolutions Depth-wise separable convolutions Dilated convolutions Improving the efficiency of CNNs Convolution as matrix multiplication Winograd convolutions Visualizing CNNs Guided backpropagation Gradient-weighted class activation mapping CNN regularization Introducing transfer learning Implementing transfer learning with PyTorch Transfer learning with TensorFlow 2.0 Summary Chapter 3: Advanced Convolutional Networks Introducing AlexNet An introduction to Visual Geometry Group VGG with PyTorch and TensorFlow Understanding residual networks Implementing residual blocks Understanding Inception networks Inception v1 Inception v2 and v3 Inception v4 and Inception-ResNet Introducing Xception Introducing MobileNet An introduction to DenseNets The workings of neural architecture search Introducing capsule networks The limitations of convolutional networks Capsules Dynamic routing The structure of the capsule network Summary Chapter 4: Object Detection and Image Segmentation Introduction to object detection Approaches to object detection Object detection with YOLOv3 A code example of YOLOv3 with OpenCV Object detection with Faster R-CNN Region proposal network Detection network Implementing Faster R-CNN with PyTorch Introducing image segmentation Semantic segmentation with U-Net Instance segmentation with Mask R-CNN Implementing Mask R-CNN with PyTorch Summary Chapter 5: Generative Models Intuition and justification of generative models Introduction to VAEs Generating new MNIST digits with VAE Introduction to GANs Training GANs Training the discriminator Training the generator Putting it all together Problems with training GANs Types of GAN Deep Convolutional GAN Implementing DCGAN Conditional GAN Implementing CGAN Wasserstein GAN Implementing WGAN Image-to-image translation with CycleGAN Implementing CycleGAN Building the generator and discriminator Putting it all together Introducing artistic style transfer Summary Section 3: Natural Language and Sequence Processing Chapter 6: Language Modeling Understanding n-grams Introducing neural language models Neural probabilistic language model Word2Vec CBOW Skip-gram fastText Global Vectors for Word Representation model Implementing language models Training the embedding model Visualizing embedding vectors Summary Chapter 7: Understanding Recurrent Networks Introduction to RNNs RNN implementation and training Backpropagation through time Vanishing and exploding gradients Introducing long short-term memory Implementing LSTM Introducing gated recurrent units Implementing GRUs Implementing text classification Summary Chapter 8: Sequence-to-Sequence Models and Attention Introducing seq2seq models Seq2seq with attention Bahdanau attention Luong attention General attention Implementing seq2seq with attention Implementing the encoder Implementing the decoder Implementing the decoder with attention Training and evaluation Understanding transformers The transformer attention The transformer model Implementing transformers Multihead attention Encoder Decoder Putting it all together Transformer language models Bidirectional encoder representations from transformers Input data representation Pretraining Fine-tuning Transformer-XL Segment-level recurrence with state reuse Relative positional encodings XLNet Generating text with a transformer language model Summary Section 4: A Look to the Future Chapter 9: Emerging Neural Network Designs Introducing Graph NNs Recurrent GNNs Convolutional Graph Networks Spectral-based convolutions Spatial-based convolutions with attention Graph autoencoders Neural graph learning Implementing graph regularization Introducing memory-augmented NNs Neural Turing machines MANN* Summary Chapter 10: Meta Learning Introduction to meta learning Zero-shot learning One-shot learning Meta-training and meta-testing Metric-based meta learning Matching networks for one-shot learning Siamese networks Implementing Siamese networks Prototypical networks Optimization-based learning Summary Chapter 11: Deep Learning for Autonomous Vehicles Introduction to AVs Brief history of AV research Levels of automation Components of an AV system Environment perception Sensing Localization Moving object detection and tracking Path planning Introduction to 3D data processing Imitation driving policy Behavioral cloning with PyTorch Generating the training dataset Implementing the agent neural network Training Letting the agent drive Putting it all together Driving policy with ChauffeurNet Input and output representations Model architecture Training Summary Other Books You May Enjoy Index