دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: حمل و نقل ویرایش: نویسندگان: Avinash Kumar Agarwal, Antonio García Martínez, Ankur Kalwar, Hardikk Valera سری: Energy, Environment, and Sustainability ISBN (شابک) : 9811684170, 9789811684173 ناشر: Springer سال نشر: 2021 تعداد صفحات: 367 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 10 مگابایت
در صورت تبدیل فایل کتاب Advanced Combustion for Sustainable Transport به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب احتراق پیشرفته برای حمل و نقل پایدار نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب مبتنی بر فناوریهای احتراق پیشرفته است که در حال حاضر در موتورهای احتراق داخلی استفاده میشوند. در مورد استراتژی های مختلف برای بهبود احتراق دیزل معمولی بحث می کند. این جلد شامل فصلهایی در مورد تکنیکهای احتراق در دمای پایین موتورهای احتراق تراکمی است که منجر به کاهش قابلتوجه انتشار NOx و دوده میشود. این محتوا همچنین تکنولوژی تراکم بنزین و تکنیک های نوری جدید را در موتورهای پیشرفته تزریق مستقیم بنزین برجسته می کند. تحقیقات و نتایج آن که در اینجا ارائه شده است، پیشرفتها را در فناوریهای احتراق، تجزیه و تحلیل مسائل مختلف مربوط به احتراق درون سیلندر، تشکیل آلایندهها و سوختهای جایگزین برجسته میکند. این کتاب برای کسانی که در دانشگاه و صنعت درگیر در سوختها، موتورهای آی سی، تحقیقات احتراق موتور هستند، جالب خواهد بود.
This book is based on advanced combustion technologies currently employed in internal combustion engines. It discusses different strategies for improving conventional diesel combustion. The volume includes chapters on low-temperature combustion techniques of compression-ignition engines which results in significant reduction of NOx and soot emissions. The content also highlights newly evolved gasoline compression technology and optical techniques in advanced gasoline direct injection engines. the research and its outcomes presented here highlight advancements in combustion technologies, analysing various issues related to in-cylinder combustion, pollutant formation and alternative fuels. This book will be of interest to those in academia and industry involved in fuels, IC engines, engine combustion research.
Preface Contents Editors and Contributors Part I General 1 Introduction to Advanced Combustion for Sustainable Transport References Part II Advanced Combustion Technologies for CI Engines 2 Strategical Evolution of Clean Diesel Combustion 2.1 Introduction 2.1.1 Future of Diesel Engine 2.1.2 CDC and LTC 2.2 Practical Limit of the Efficiency 2.2.1 Constraints for Optimisation 2.2.2 Heat Loss 2.3 Mechanisms of Pollutant Formation 2.3.1 Soot Formation 2.3.2 CO and UHC Formation 2.4 Strategic Evolution of CDC 2.4.1 Injection Strategies 2.4.2 Swirl and Intake Geometry 2.4.3 Piston Bowl Geometry 2.5 Future Research Directions 2.5.1 Thermal Aspects 2.5.2 Interdisciplinary Aspects 2.6 Summary References 3 Multi-mode Low Temperature Combustion (LTC) and Mode Switching Control 3.1 Introduction 3.1.1 Limitations of LTC Operation 3.1.2 Benefits of Multi-mode Operation 3.1.3 Optimal Control of Multi-mode LTC Engine 3.2 Controlled Variables 3.2.1 Combustion Phasing 3.2.2 Engine Load 3.2.3 Exhaust Gas Temperature 3.2.4 Maximum Pressure Rise Rate 3.2.5 Engine-Out Emissions 3.2.6 COVimep 3.3 Control Actuators 3.3.1 Variable Valve Actuation 3.3.2 Fuel Injection System 3.3.3 Fast Thermal Management (FTM) 3.3.4 Exhaust Gas Recirculation (EGR) 3.3.5 Intake Air Pressure Boosting System 3.4 LTC Control 3.4.1 Model-Free Closed-Loop Control Systems 3.4.2 Model-Based Closed-Loop Control Systems 3.4.3 HCCI Control 3.4.4 PPCI Control 3.4.5 RCCI Control 3.5 Mode Switching Control 3.5.1 SI-HCCI-SI Mode Switching 3.5.2 HCCI-ASSCI-SI Mode Switching 3.5.3 HCCI-PPCI Mode Switching 3.5.4 CDC-PPCI Mode Switching 3.6 CDC-RCCI Mode Switching 3.7 RCCI-CDF Mode Switching 3.8 Summary References 4 State of the Art in Low-Temperature Combustion Technologies: HCCI, PCCI, and RCCI 4.1 Introduction 4.1.1 Single Fuelled and Dual Fuelled Advance Combustion Technique 4.2 Strategies to Develop Low-Temperature Combustion Technology 4.2.1 Homogeneous Charge Compression Ignition Combustion (HCCI) 4.2.2 Premixed Charge Compression Ignition Combustion (PCCI) 4.2.3 Reactivity Controlled Compression Ignition (RCCI) 4.3 Concluding Remarks 4.4 Declaration of Competing Interest References 5 Combustion in Diesel Fuelled Partially Premixed Compression Ignition Engines 5.1 Introduction 5.2 Conventional Diesel Jet Combustion Model 5.3 Chemical Kinetics 5.4 Planar Laser-Induced Florescence (PLIF) 5.5 First Stage Ignition 5.6 Second Stage Ignition 5.7 Summary and Way Forward References 6 Gasoline Compression Ignition Combustion Strategies and Recent Engine System Developments for Commercial and Passenger Transport Applications 6.1 Introduction 6.2 Gasoline Autoignition Behavior 6.3 Gasoline Spray Characteristics 6.4 Overview of GCI Combustion Strategies 6.4.1 Homogeneous or Lightly-Stratified GCI (HCCI) 6.4.2 Partially-Premixed GCI (PPCI) 6.4.3 Mixing-Controlled GCI (MCCI) 6.5 Recent System-Level Developments of GCI Engines 6.5.1 15 L Heavy-Duty GCI Engine for Meeting 0.02 g/hp-Hr Tailpipe NOx 6.5.2 2.2 L Gasoline Direct Injection Compression Ignition Engine 6.5.3 1.4 L Mixed-Mode Gasoline Low Temperature Combustion Engine 6.5.4 2 L Mazda Skyactiv-X Gasoline Engine 6.5.5 Technology Outlook for GCI 6.6 Summary References Part III Advanced Combustion Technologies for SI Engines 7 Optical Diagnostics for Gasoline Direct Injection Engines 7.1 Introduction 7.2 Optical Diagnostics in GDI Engines 7.2.1 In-cylinder Spray Characterization 7.2.2 In-cylinder Flows and Spray-Flow Interactions 7.2.3 Fuel–Air Mixture Formation 7.2.4 Flame Evolution and Pollutant Formation 7.3 Summary and Way-Forward References Part IV Dual-Fuel Combustion Technology 8 Dual-Fuel Internal Combustion Engines for Sustainable Transport Fuels 8.1 Introduction 8.2 Different Biofuels and Their Blends for Transportation 8.2.1 Dual Fuel System 8.2.2 Biomethane CNG Hybrid 8.3 Biogas-Biodiesel Fuel Mix for SI Engines 8.3.1 Potential Single Fuel Systems that Can Be Blended and Their Characteristics 8.3.2 Dual Fuel Blending Techniques: Methods of Preparation, Homogenization and Their Selection Criteria 8.3.3 Conditions for Maximizing the Combustion Potentials of Dual Fuels in ICEs 8.3.4 Factors Effecting Dual Fuel Characteristics in SI Engines 8.3.5 Dual Fuel Systems and Engine Life 8.3.6 Current Trends in the Use of Biofuels as High-Performance Engine Fuels 8.4 Future Prospects of Dual-Fuel System as an Alternative Fuel 8.5 Sustainable Technologies for Alternative Fuels and Future Challenges 8.5.1 Sustainable Technologies 8.5.2 Current Challenges and Future Trends 8.6 Conclusion References 9 Compressed Natural Gas Utilization in Dual-Fuel Internal Combustion Engines 9.1 Introduction 9.2 Natural Gas 9.3 Dual-Fuel Engines 9.4 CNG-Diesel Dual-Fuel Engines 9.5 CNG-Gasoline Dual-Fuel Engine 9.6 Summary and Way-Forward References Part V Miscellaneous 10 Analysis of the Potential Metal Hydrides for Hydrogen Storage in Automobile Applications 10.1 Introduction 10.2 Physisorption-Based Hydrogen Storage 10.2.1 Metal Organic Frameworks (MOFs) 10.2.2 Porous Carbons 10.2.3 Zeolites 10.3 Chemisorption-Based Hydrogen Storage 10.3.1 Complex Metal Hydrides 10.3.2 Metal Hydrides 10.4 Metal Hydride Properties 10.4.1 Metal Hydrides Available 10.4.2 Equilibrium Pressure for Metal Hydrides 10.4.3 Thermal Modelling of Metal Hydrides 10.5 Requirements of Metal Hydrides for On-Board Applications 10.5.1 Achieving the Required Pressure 10.5.2 Achieving the Required Heat Transfer 10.5.3 Mass and Volume Considerations 10.5.4 Recyclability of Metal Hydrides for Many Cycles 10.6 Conclusion References 11 Waste Heat Recovery Potential from Internal Combustion Engines Using Organic Rankine Cycle 11.1 Introduction 11.1.1 WHR System Evolution and Trends 11.1.2 Current State-of-the-Art of the ORC Systems 11.2 Fundamentals of Organic Rankine Cycle (ORC) 11.2.1 Thermodynamic Analysis of the ORC System 11.2.2 ORC System Components 11.2.3 Working Fluids for ORC Systems 11.3 Economic Analysis of the ORC Systems 11.4 WHR System for ICEs: Advantages and Challenges 11.5 Future Directions in WHR Technologies References