دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1 نویسندگان: Anatoly V. Zayats, Stefan Maier سری: A Wiley-Science Wise Co-Publication ISBN (شابک) : 1118092082, 9781118092088 ناشر: Wiley سال نشر: 2013 تعداد صفحات: 326 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 5 مگابایت
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Active Plasmonics and Tuneable Plasmonic Metamaterials به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب پلاسمونیک های فعال و فرامواد پلاسمونیک قابل تنظیم نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب که توسط دو تن از معتبرترین محققین پلاسمونیک ویرایش شده است، مروری بر وضعیت فعلی در پلاسمونیک و فرامواد مبتنی بر پلاسمونیک، با تأکید بر قابلیتهای فعال و چشماندازی به پیشرفتهای آینده ارائه میکند. این کتاب چند منظوره است، برای تازه واردان و دانشمندان علاقه مند به کاربردهای پلاسمونیک ها و فرامواد و همچنین برای محققان مستقر در این حوزه چند رشته ای مفید است.
This book, edited by two of the most respected researchers in plasmonics, gives an overview of the current state in plasmonics and plasmonic-based metamaterials, with an emphasis on active functionalities and an eye to future developments. This book is multifunctional, useful for newcomers and scientists interested in applications of plasmonics and metamaterials as well as for established researchers in this multidisciplinary area.
1.1. Introduction to Spasers and Spasing / Mark I. Stockman --
1.2. Spaser Fundamentals / Mark I. Stockman --
1.2.1. Brief Overview of the Latest Progress in Spasers / Mark I. Stockman --
1.3. Quantum Theory of Spaser / Mark I. Stockman --
1.3.1. Surface Plasmon Eigenmodes and Their Quantization / Mark I. Stockman --
1.3.2. Quantum Density Matrix Equations (Optical Bloch Equations) for Spaser / Mark I. Stockman --
1.3.3. Equations for CW Regime / Mark I. Stockman --
1.3.4. Spaser operation in CW Mode / Mark I. Stockman --
1.3.5. Spaser as Ultrafast Quantum Nanoamplifier / Mark I. Stockman --
1.3.6. Monostable Spaser as a Nanoamplifier in Transient Regime / Mark I. Stockman --
1.4. Compensation of Loss by Gain and Spasing / Mark I. Stockman --
1.4.1. Introduction to Loss Compensation by Gain / Mark I. Stockman --
1.4.2. Permittivity of Nanoplasmonic Metamaterial / Mark I. Stockman --
1.4.3. Plasmonic Eigenmodes and Effective Resonant Permittivity of Metamaterials / Mark I. Stockman --
1.4.4. Conditions of Loss Compensation by Gain and Spasing / Mark I. Stockman --
1.4.5. Discussion of Spasing and Loss Compensation by Gain / Mark I. Stockman --
1.4.6. Discussion of Published Research on Spasing and Loss Compensations / Mark I. Stockman --
Acknowledgments / Mark I. Stockman --
References / Mark I. Stockman --
2.1. Introduction / Meir Orenstein / Pavel Ginzburg --
2.2. Metallic Nonlinearities-Basic Effects and Models / Meir Orenstein / Pavel Ginzburg --
2.2.1. Local Nonlinearity-Transients by Carrier Heating / Meir Orenstein / Pavel Ginzburg --
2.2.2. Plasma Nonlinearity-The Ponderomotive Force / Meir Orenstein / Pavel Ginzburg --
2.2.3. Parametric Process in Metals / Meir Orenstein / Pavel Ginzburg --
2.2.4. Metal Damage and Ablation / Meir Orenstein / Pavel Ginzburg --
2.3. Nonlinear Propagation of Surface Plasmon Polaritons / Meir Orenstein / Pavel Ginzburg --
2.3.1. Nonlinear SPP Modes / Meir Orenstein / Pavel Ginzburg --
2.3.2. Plasmon Solitons / Meir Orenstein / Pavel Ginzburg --
2.3.3. Nonlinear Plasmonic Waveguide Couplers / Meir Orenstein / Pavel Ginzburg --
2.4. Localized Surface Plasmon Nonlinearity / Meir Orenstein / Pavel Ginzburg --
2.4.1. Cavities and Nonlinear Interactions Enhancement / Meir Orenstein / Pavel Ginzburg --
2.4.2. Enhancement of Nonlinear Vacuum Effects / Meir Orenstein / Pavel Ginzburg --
2.4.3. High Harmonic Generation / Meir Orenstein / Pavel Ginzburg --
2.4.4. Localized Field Enhancement Limitations / Meir Orenstein / Pavel Ginzburg --
2.5. Summary / Meir Orenstein / Pavel Ginzburg --
Acknowledgments / Meir Orenstein / Pavel Ginzburg --
References / Meir Orenstein / Pavel Ginzburg --
3.1. Introduction / Gregory A. Wurtz / Wayne Dickson / Robert J. Pollard / Antony Murphy / Anatoly V. Zayats --
3.2. Nanorod Metamaterial Geometry / Gregory A. Wurtz / Wayne Dickson / Robert J. Pollard / Antony Murphy / Anatoly V. Zayats --
3.3. Optical Properties / Gregory A. Wurtz / Wayne Dickson / Robert J. Pollard / Antony Murphy / Anatoly V. Zayats --
3.3.1. Microscopic Description of the Metamaterial Electromagnetic Modes / Gregory A. Wurtz / Wayne Dickson / Robert J. Pollard / Antony Murphy / Anatoly V. Zayats --
3.3.2. Effective Medium Theory of the Nanorod Metamaterial / Gregory A. Wurtz / Wayne Dickson / Robert J. Pollard / Antony Murphy / Anatoly V. Zayats --
3.3.3. Epsilon-Near-Zero Metamaterials and Spatial Dispersion Effects / Gregory A. Wurtz / Wayne Dickson / Robert J. Pollard / Antony Murphy / Anatoly V. Zayats --
3.3.4. Guided Modes in the Anisotropic Metamaterial Slab / Gregory A. Wurtz / Wayne Dickson / Robert J. Pollard / Antony Murphy / Anatoly V. Zayats --
3.4. Nonlinear Effects in Nanorod Metamaterials / Gregory A. Wurtz / Wayne Dickson / Robert J. Pollard / Antony Murphy / Anatoly V. Zayats --
3.4.1. Nanorod Metamaterial Hybridized with Nonlinear Dielectric / Gregory A. Wurtz / Wayne Dickson / Robert J. Pollard / Antony Murphy / Anatoly V. Zayats --
3.4.2. Intrinsic Metal Nonlinearity of Nanorod Metamaterials / Gregory A. Wurtz / Wayne Dickson / Robert J. Pollard / Antony Murphy / Anatoly V. Zayats --
3.5. Molecular Plasmonics in Metamaterials / Gregory A. Wurtz / Wayne Dickson / Robert J. Pollard / Antony Murphy / Anatoly V. Zayats --
3.6. Electro-Optical Effects in Plasmonic Nanorod Metamaterial Hybridized with Liquid Crystals / Gregory A. Wurtz / Wayne Dickson / Robert J. Pollard / Antony Murphy / Anatoly V. Zayats --
3.7. Conclusion / Gregory A. Wurtz / Wayne Dickson / Robert J. Pollard / Antony Murphy / Anatoly V. Zayats --
References / Gregory A. Wurtz / Wayne Dickson / Robert J. Pollard / Antony Murphy / Anatoly V. Zayats --
4.1. Introduction / John B. Pendry / Alexandre Aubry --
4.2. The Conformal Transformation Approach / John B. Pendry / Alexandre Aubry --
4.2.1. A Set of Canonic Plasmonic Structures / John B. Pendry / Alexandre Aubry --
4.2.2. Perfect Singular Structures / John B. Pendry / Alexandre Aubry --
4.2.3. Singular Plasmonic Structures / John B. Pendry / Alexandre Aubry --
4.2.3.1. Conformal Mapping of Singular Structures / John B. Pendry / Alexandre Aubry --
4.2.3.2. Conformal Mapping of Blunt-Ended Singular Structures / John B. Pendry / Alexandre Aubry --
4.2.4. Resonant Plasmonic Structures / John B. Pendry / Alexandre Aubry --
4.3. Broadband Light Harvesting and Nanofocusing / John B. Pendry / Alexandre Aubry --
4.3.1. Broadband Light Absorption / John B. Pendry / Alexandre Aubry --
4.3.2. Balance between Energy Accumulation and Dissipation / John B. Pendry / Alexandre Aubry --
4.3.3. Extension to 3D / John B. Pendry / Alexandre Aubry --
4.3.4. Conclusion / John B. Pendry / Alexandre Aubry --
4.4. Surface Plasmons and Singularities / John B. Pendry / Alexandre Aubry --
4.4.1. Control of the Bandwidth with the Vertex Angle / John B. Pendry / Alexandre Aubry --
4.4.2. Effect of the Bluntness / John B. Pendry / Alexandre Aubry --
4.5. Plasmonic Hybridization Revisited with Transformation Optics / John B. Pendry / Alexandre Aubry --
4.5.1. A Resonant Behavior / John B. Pendry / Alexandre Aubry --
4.5.2. Nanofocusing Properties / John B. Pendry / Alexandre Aubry --
4.6. Beyond the Quasi-Static Approximation / John B. Pendry / Alexandre Aubry --
4.6.1. Conformal Transformation Picture / John B. Pendry / Alexandre Aubry --
4.6.2. Radiative Losses / John B. Pendry / Alexandre Aubry --
4.6.3. Fluorescence Enhancement / John B. Pendry / Alexandre Aubry --
4.6.3.1. Fluorescence Enhancement in the Near-Field of Nanoantenna / John B. Pendry / Alexandre Aubry --
4.6.3.2. The CT Approach / John B. Pendry / Alexandre Aubry --
4.7. Nonlocal effects / John B. Pendry / Alexandre Aubry --
4.7.1. Conformal Mapping of Nonlocality / John B. Pendry / Alexandre Aubry --
4.7.2. Toward the Physics of Local Dimers / John B. Pendry / Alexandre Aubry --
4.8. Summary and Outlook / John B. Pendry / Alexandre Aubry --
Acknowledgments / John B. Pendry / Alexandre Aubry --
References / John B. Pendry / Alexandre Aubry --
5.1. Introduction / Pierre Berini --
5.2. Surface Plasmon Waveguides / Pierre Berini --
5.2.1. Unidimensional Structures / Pierre Berini --
5.2.2. Bidimensional Structures / Pierre Berini --
5.2.3. Confinement-Attenuation Trade-Off / Pierre Berini --
5.2.4. Optical Processes Involving SPPs / Pierre Berini --
5.3. Single Interface / Pierre Berini --
5.3.1. Theoretical / Pierre Berini --
5.3.2. Experimental / Pierre Berini --
5.4. Symmetric Metal Films / Pierre Berini --
5.4.1. Gratings / Pierre Berini --
5.4.2. Theoretical / Pierre Berini --
5.4.3. Experimental / Pierre Berini --
5.5. Metal Clads / Pierre Berini --
5.5.1. Theoretical / Pierre Berini --
5.5.2. Experimental / Pierre Berini --
5.6. Other Structures / Pierre Berini --
5.6.1. Dielectric-Loaded SPP Waveguides / Pierre Berini --
5.6.2. Hybrid SPP Waveguide / Pierre Berini --
5.6.3. Nanostructures / Pierre Berini --
5.7. Conclusions / Pierre Berini --
References / Pierre Berini --
6.1. Phase Response of Optical Antennas / Nanfang Yu / Mikhail A. Kats / Patrice Genevet / Francesco Aieta / Romain Blanchard / Guillaume Aoust / Zeno Gaburro / Federico Capasso --
6.1.1. Introduction / Nanfang Yu / Mikhail A. Kats / Patrice Genevet / Francesco Aieta / Romain Blanchard / Guillaume Aoust / Zeno Gaburro / Federico Capasso --
6.1.2. Single Oscillator Model for Linear Optical Antennas / Nanfang Yu / Mikhail A. Kats / Patrice Genevet / Francesco Aieta / Romain Blanchard / Guillaume Aoust / Zeno Gaburro / Federico Capasso --
6.1.3. Two-Oscillator Model for 2D Structures Supporting Two Orthogonal Plasmonic Modes / Nanfang Yu / Mikhail A. Kats / Patrice Genevet / Francesco Aieta / Romain Blanchard / Guillaume Aoust / Zeno Gaburro / Federico Capasso --
6.1.4. Analytical Models for V-Shaped Optical Antennas / Nanfang Yu / Mikhail A. Kats / Patrice Genevet / Francesco Aieta / Romain Blanchard / Guillaume Aoust / Zeno Gaburro / Federico Capasso --
6.1.5. Optical Properties of V-Shaped Antennas: Experiments and Simulations / Nanfang Yu / Mikhail A. Kats / Patrice Genevet / Francesco Aieta / Romain Blanchard / Guillaume Aoust / Zeno Gaburro / Federico Capasso --
6.2. Application\'s of Phased Optical Antenna Arrays / Nanfang Yu / Mikhail A. Kats / Patrice Genevet / Francesco Aieta / Romain Blanchard / Guillaume Aoust / Zeno Gaburro / Federico Capasso Note continued: 6.2.1. Generalized Laws of Reflection and Refraction: Meta-Interfaces with Phase Discontinuities / Nanfang Yu / Mikhail A. Kats / Patrice Genevet / Francesco Aieta / Romain Blanchard / Guillaume Aoust / Zeno Gaburro / Federico Capasso --
6.2.2. Out-of-Plane Reflection and Refraction of Light by Meta-Interfaces / Nanfang Yu / Mikhail A. Kats / Patrice Genevet / Francesco Aieta / Romain Blanchard / Guillaume Aoust / Zeno Gaburro / Federico Capasso --
6.2.3. Giant and Tuneable Optical Birefringence / Nanfang Yu / Mikhail A. Kats / Patrice Genevet / Francesco Aieta / Romain Blanchard / Guillaume Aoust / Zeno Gaburro / Federico Capasso --
6.2.4. Vortex Beams Created by Meta-Interfaces / Nanfang Yu / Mikhail A. Kats / Patrice Genevet / Francesco Aieta / Romain Blanchard / Guillaume Aoust / Zeno Gaburro / Federico Capasso --
References / Nanfang Yu / Mikhail A. Kats / Patrice Genevet / Francesco Aieta / Romain Blanchard / Guillaume Aoust / Zeno Gaburro / Federico Capasso --
7.1. Introduction / Pieter Neutens / Paul Van Dorpe --
7.2. Electrical Detection of Surface Plasmons / Pieter Neutens / Paul Van Dorpe --
7.2.1. Plasmon Detection with Tunnel Junctions / Pieter Neutens / Paul Van Dorpe --
7.2.2. Plasmon-Enhanced Solar Cells / Pieter Neutens / Paul Van Dorpe --
7.2.3. Plasmon-Enhanced Photodetectors / Pieter Neutens / Paul Van Dorpe --
7.2.4. Waveguide-Integrated Surface Plasmon Polariton Detectors / Pieter Neutens / Paul Van Dorpe --
7.3. Outlook / Pieter Neutens / Paul Van Dorpe --
References / Pieter Neutens / Paul Van Dorpe --
8.1. The Terahertz Region for Sensing / Stephen M. Hanham / Stefan A. Maier --
8.2. THz Plasmonics / Stephen M. Hanham / Stefan A. Maier --
8.3. SPPs on Semiconductor Surfaces / Stephen M. Hanham / Stefan A. Maier --
8.3.1. Active Control of Semiconductor Plasmonics / Stephen M. Hanham / Stefan A. Maier --
8.4. SSPP on Structured Metal Surfaces / Stephen M. Hanham / Stefan A. Maier --
8.5. THz Plasmonic Antennas / Stephen M. Hanham / Stefan A. Maier --
8.6. Extraordinary Transmission / Stephen M. Hanham / Stefan A. Maier --
8.7. THz Plasmons on Graphene / Stephen M. Hanham / Stefan A. Maier --
References / Stephen M. Hanham / Stefan A. Maier --
9.1. Introduction to Canalization Regime of Subwavelength Imaging / Pavel A. Belov --
9.2. Wire Medium Lens at the Microwave Frequencies / Pavel A. Belov --
9.3. Magnifying and Demagnifying Lenses with Super-Resolution / Pavel A. Belov --
9.4. Imaging at the Terahertz and Infrared Frequencies / Pavel A. Belov --
9.5. Nanolenses Formed by Nanorod Arrays for the Visible Frequency Range / Pavel A. Belov --
9.6. Superlenses and Hyperlenses Formed by Multilayered Metal-Dielectric Nanostructures / Pavel A. Belov --
References / Pavel A. Belov --
10.1. Introduction / Satoshi Ishii / Xingjie Ni / Vladimir P. Drachev / Mark D. Thoreson / Vladimir M. Shalaev / Alexander V. Kildishev --
10.2. Polarization-Selective Gold Nanoslit Lenses / Satoshi Ishii / Xingjie Ni / Vladimir P. Drachev / Mark D. Thoreson / Vladimir M. Shalaev / Alexander V. Kildishev --
10.2.1. Design Concept of Gold Nanoslit Lenses / Satoshi Ishii / Xingjie Ni / Vladimir P. Drachev / Mark D. Thoreson / Vladimir M. Shalaev / Alexander V. Kildishev --
10.2.2. Experimental Demonstration of Gold Nanoslit Lenses / Satoshi Ishii / Xingjie Ni / Vladimir P. Drachev / Mark D. Thoreson / Vladimir M. Shalaev / Alexander V. Kildishev --
10.3. Metallic Nanoslit Lenses with Focal-Intensity Tuneability and Focal Length Shifting / Satoshi Ishii / Xingjie Ni / Vladimir P. Drachev / Mark D. Thoreson / Vladimir M. Shalaev / Alexander V. Kildishev --
10.3.1. Liquid Crystal-Controlled Nanoslit Lenses / Satoshi Ishii / Xingjie Ni / Vladimir P. Drachev / Mark D. Thoreson / Vladimir M. Shalaev / Alexander V. Kildishev --
10.3.2. Nonlinear Materials for Controlling Nanoslit Lenses / Satoshi Ishii / Xingjie Ni / Vladimir P. Drachev / Mark D. Thoreson / Vladimir M. Shalaev / Alexander V. Kildishev --
10.4. Lamellar Structures with Hyperbolic Dispersion Enable Subwavelength Focusing with Metallic Nanoslits / Satoshi Ishii / Xingjie Ni / Vladimir P. Drachev / Mark D. Thoreson / Vladimir M. Shalaev / Alexander V. Kildishev --
10.4.1. Active Lamellar Structures with Hyperbolic Dispersion / Satoshi Ishii / Xingjie Ni / Vladimir P. Drachev / Mark D. Thoreson / Vladimir M. Shalaev / Alexander V. Kildishev --
10.4.2. Subwavelength Focusing with Active Lamellar Structures / Satoshi Ishii / Xingjie Ni / Vladimir P. Drachev / Mark D. Thoreson / Vladimir M. Shalaev / Alexander V. Kildishev --
10.4.3. Experimental Demonstration of Subwavelength Diffraction / Satoshi Ishii / Xingjie Ni / Vladimir P. Drachev / Mark D. Thoreson / Vladimir M. Shalaev / Alexander V. Kildishev --
10.5. Summary / Satoshi Ishii / Xingjie Ni / Vladimir P. Drachev / Mark D. Thoreson / Vladimir M. Shalaev / Alexander V. Kildishev --
Acknowledgments / Satoshi Ishii / Xingjie Ni / Vladimir P. Drachev / Mark D. Thoreson / Vladimir M. Shalaev / Alexander V. Kildishev.