ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Active Geophysical Monitoring

دانلود کتاب پایش فعال ژئوفیزیکی

Active Geophysical Monitoring

مشخصات کتاب

Active Geophysical Monitoring

ویرایش: 2 
نویسندگان:   
سری:  
ISBN (شابک) : 0081026846, 9780081026847 
ناشر: Elsevier 
سال نشر: 2019 
تعداد صفحات: 607 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 17 مگابایت 

قیمت کتاب (تومان) : 37,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 6


در صورت تبدیل فایل کتاب Active Geophysical Monitoring به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب پایش فعال ژئوفیزیکی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب پایش فعال ژئوفیزیکی



نظارت ژئوفیزیکی فعال، ویرایش دوم، روش کلیدی را برای مطالعه ساختارها و حالات در حال تکامل زمان در لیتوسفر زمین از نظر تکتونیکی فعال ارائه می دهد. بر اساس مشاهدات مکرر با گذشت زمان و تفسیر تغییرات ناشی از سنگ در میدان‌های ژئوفیزیکی که به طور دوره‌ای توسط منابع کنترل‌شده برانگیخته می‌شوند، پایش ژئوفیزیکی فعال را می‌توان در زمینه‌های مختلفی در ژئوفیزیک، از اکتشاف، لرزه‌شناسی و کاهش بلایا اعمال کرد. این ویرایش اصلاح شده نتایج توسعه سیستماتیک استراتژیک و کاربرد فناوری های جدید را ارائه می دهد. این کتاب تأثیر نظارت فعال بر ژئوفیزیک زمین جامد را نشان می‌دهد، همچنین به موضوعات کلیدی مانند جذب و ذخیره کربن، ژئودزی و ابزارهای جدید فناوری می‌پردازد.

این کتاب برای دانشجویان فارغ‌التحصیل، محققان و پژوهشگران ضروری است. پزشکان در سراسر ژئوفیزیک.


توضیحاتی درمورد کتاب به خارجی

Active Geophysical Monitoring, Second Edition, presents a key method for studying time-evolving structures and states in the tectonically active Earth's lithosphere. Based on repeated time-lapse observations and interpretation of rock-induced changes in geophysical fields periodically excited by controlled sources, active geophysical monitoring can be applied to a variety of fields in geophysics, from exploration, to seismology and disaster mitigation. This revised edition presents the results of strategic systematic development and the application of new technologies. It demonstrates the impact of active monitoring on solid Earth geophysics, also delving into key topics, such as carbon capture and storage, geodesy, and new technological tools.

This book is an essential for graduate students, researchers and practitioners across geophysics.



فهرست مطالب

Cover
Active Geophysical Monitoring
Copyright
List of contributors
List of reviewers
Section 1: General concept of active geophysical monitoring
1.1 Elements of active geophysical monitoring theory
	1.1.1 Introduction
	1.1.2 Main properties of the integral precursor
	1.1.3 Multidisciplinary model of integral precursor and combined inverse problems
	1.1.4 Methods for vibroseismic monitoring of seismic-prone zones
	1.1.5 Conclusion
	Acknowledgments
	References
1.2 Large-scale geophysical surveys of the Earth’s crust using high-power electromagnetic pulses
	1.2.1 Introduction
	1.2.2 General concept of the application of high-power electromagnetic pulses in geophysical surveys
	1.2.3 Analysis of the geoelectrical structure of the Earth’s crust and upper mantle
		1.2.3.1 Study of the geoelectrical structure of the Earth’s crust in the Ural Mountains
		1.2.3.2 Analysis of a deep geoelectrical structure in the eastern part of the Baltic Shield
		1.2.3.3 Deep geoelectrical structure of the Northern Tien Shan region
	1.2.4 Electromagnetic soundings with a powerful source in seismically active regions
		1.2.4.1 Electromagnetic soundings for earthquake prediction
		1.2.4.2 Influence of a high-power electromagnetic pulse on the spatial–temporal structure of seismicity
	1.2.5 Electromagnetic exploration for oil and gas with the use of geophysical magnetohydrodynamic facilities
		1.2.5.1 Electromagnetic sounding for oil and gas on land
			1.2.5.1.1 Electromagnetic sounding in the precaspian geological province
			1.2.5.1.2 Electromagnetic sounding in Eastern Siberia
		1.2.5.2 Electromagnetic exploration for oil and gas on a shelf
	1.2.6 Deep electromagnetic studies in ore-prospective regions
	1.2.7 Conclusion
	References
1.3 Active vibromonitoring: experimental systems and fieldwork results
	1.3.1 Introduction
	1.3.2 Vibromonitoring experimental systems
	1.3.3 Active vibromonitoring experiments
		1.3.3.1 Variations of seismic waves caused by the Earth’s tides
		1.3.3.2 Vibroseismic interferometry experiments
		1.3.3.3 Data processing and results
	1.3.4 Active vibroseismic experiment for Earth’s crust velocity models verification
	1.3.5 Conclusion
	Acknowledgments
	References
Section 2: Active monitoring targets
2.1 Active geophysical monitoring of hydrocarbon reservoirs using electromagnetic methods
	2.1.1 Introduction
	2.1.2 Principles of reservoir production monitoring using marine electromagnetic methods
	2.1.3 Overview of the numerical modeling technique
	2.1.4 Computer simulation of hydrocarbon reservoir monitoring using electromagnetic methods
		2.1.4.1 Model 1: Hydrocarbon reservoir and a salt dome structure
		2.1.4.2 Model 1: Forward modeling results
		2.1.4.3 Model 2: Hydrocarbon reservoir and a salt dome in an area with a rough sea-bottom bathymetry
		2.1.4.4 Model 2: Forward modeling results
	2.1.5 Conclusion
	Acknowledgment
	References
2.2 Joint iterative migration of surface and borehole gravity gradiometry data
	2.2.1 Introduction
	2.2.2 Gravity gradiometry data
	2.2.3 Migration of surface gravity and gravity tensor fields and three-dimensional density imaging
	2.2.4 Migration of borehole gravity and gravity tensor fields and three-dimensional density imaging
	2.2.5 Joint migration
	2.2.6 Iterative migration
		2.2.6.1 Model study 1
		2.2.6.2 Model study 2
		2.2.6.3 Model study 3
	2.2.7 Conclusions
	Acknowledgments
	References
	Further reading
2.3 Feasibility study of gravity gradiometry monitoring of CO2 sequestration in deep reservoirs using surface and borehole data
	2.3.1 Introduction
	2.3.2 The Big Sky Carbon Sequestration Partnership
	2.3.3 Kevin Dome project, Montana
	2.3.4 Kevin Dome model study
	2.3.5 Density model of the reservoir filled with CO2
	2.3.6 Modeling of the time-lapse reservoir monitoring using surface and borehole gravity gradiometry data
	2.3.7 Kevin Dome leakage model
	2.3.8 Conclusion
	Acknowledgments
	References
2.4 Feasibility study of reservoir monitoring using the induced polarization effect associated with nanoparticles
	2.4.1 Introduction
	2.4.2 Application of the nanoparticle-enhanced borehole-to-surface electromagnetic method for hydrocarbon reservoir monitoring
	2.4.3 Experimental lab studies
		2.4.3.1 Rock samples and nanoparticle selection
		2.4.3.2 System of complex resistivity measurement
		2.4.3.3 Lab results: experiments with organic and inorganic nanoparticles
		2.4.3.4 Numerical simulation of the borehole-to-surface electromagnetic data in the hydrocarbon reservoir
	2.4.4 Description of reservoir model and reservoir monitoring system
		2.4.4.1 Selection of media and frequencies for reservoir modeling
		2.4.4.2 Setting the reservoir model
		2.4.4.3 Selection of (1) scheme of borehole-to-surface electromagnetic monitoring, (2) production stages, (3) media in rese...
		2.4.4.4 Conceptual approach to nanoparticle-assistant EM reservoir monitoring
	2.4.5 Forward modeling of lateral flood in the reservoir at different production stages
	2.4.6 Modeling of lateral flood in the reservoir
		2.4.6.1 Modeling of the electromagnetic field
		2.4.6.2 Tracing of the oil/brine+nanoparticle interface in X–Y plane at different production stages
	2.4.7 Discussion
		2.4.7.1 Correlation between the resistivity model and complex resistivity modeling
		2.4.7.2 On the sensitivity of nanoparticle-enhanced borehole-to-surface electromagnetic method for reservoir monitoring
	2.4.8 Conclusion
	Acknowledgments
	References
	Further reading
Section 3: Technology of active monitoring
3.1 Electromagnetic—accurately controlled routinely operated signal system and corresponding tensor transfer functions in d...
	3.1.1 Introduction
	3.1.2 Basic equation of electromagnetic field and the transfer function in electromagnetic—accurately controlled routinely ...
	3.1.3 The electromagnetic—accurately controlled routinely operated signal system observation system
	3.1.4 Results of the trial observation
	3.1.5 Properties of the transfer function
		3.1.5.1 Static tensor properties of the transfer function and the information on the underground conditions
		3.1.5.2 Temporal variations
	3.1.6 Summary
	Acknowledgment
	References
3.2 Development of large load capacity externally pressurized gas journal bearings for rotary-type vibration exciters with ...
	3.2.1 Introduction
	3.2.2 Externally pressurized gas journal bearing with asymmetrically arranged gas supply holes
		3.2.2.1 Configuration and working mechanism of the bearing
		3.2.2.2 Numerical calculation of the bearing characteristics and comparison of the performance
		3.2.2.3 Experimental setup of the experiments
		3.2.2.4 Experimental results for the quasistatic condition
		3.2.2.5 Experimental results for the supply gas pressure control condition
	3.2.3 Hydrostatic journal gas bearing with asymmetric gas supply
		3.2.3.1 Configuration and working mechanism of the bearing
		3.2.3.2 Numerical analysis of the bearing characteristics
			3.2.3.2.1 Numerical analysis
			3.2.3.2.2 Vibration calculation of unbalanced rotor
		3.2.3.3 Program of the pressure control system
		3.2.3.4 Experimental verification of the bearing characteristics
			3.2.3.4.1 Air supply control system with pneumatic servo valve
			3.2.3.4.2 Frequency response test
			3.2.3.4.3 Rotational test
			3.2.3.4.4 Comparison between experiment results using previous and present test rigs and calculation result
			3.2.3.4.5 Confirmation of controllable frequency range to reduce rotor vibration
	3.2.4 Conclusion
	References
3.3 Active monitoring technology in studying the interaction of geophysical fields
	3.3.1 Introduction
	3.3.2 Problem statement
	3.3.3 Acoustic oscillations of seismic vibrators
	3.3.4 Informative factors of interaction of geophysical fields
	3.3.5 An experimental study of a meteorological-dependent effect of propagation of acoustic oscillations from seismic vibrators
	3.3.6 Geoecological risk of explosions
	3.3.7 Discussion
	3.3.8 Conclusion
	Acknowledgments
	References
3.4 The nonlinear processes in active monitoring
	3.4.1 Introduction
	3.4.2 Nonlinear phenomena
	3.4.3 Nonlinear processing of vibrational seismograms
	3.4.4 Nonlinear phenomena in seismic monitoring
	3.4.5 Experimental results
	3.4.6 Discussion
	3.4.7 Conclusion
	Acknowledgments
	References
	Further reading
Section 4: Theory of data analysis and interpretation
4.1 Maxwell’s equations and numerical electromagnetic modeling in the context of the theory of differential forms
	4.1.1 Introduction
	4.1.2 Differential forms in vector field theory
		4.1.2.1 Concept of the differential form
		4.1.2.2 Exterior (wedge) product of the differential forms
		4.1.2.3 Canonical representations of the differential forms in three-dimensional Euclidean space
		4.1.2.4 The exterior derivative operation
			4.1.2.4.1 0-Forms
			4.1.2.4.2 1-Forms
			4.1.2.4.3 2-Forms
			4.1.2.4.4 3-Forms
	4.1.3 Nonstationary field equations and differential forms
		4.1.3.1 Nonstationary vector fields and differential forms in four-dimensional space E4
		4.1.3.2 Differential form equations
			4.1.3.2.1 Exterior derivative of a scalar field and a generalized source 1-form
			4.1.3.2.2 Exterior derivative of a four-potential and a generalized source 2-form
			4.1.3.2.3 Exterior derivative of a 2-form and a four-current
			4.1.3.2.4 Exterior derivatives of a 3-form and a 4-form
	4.1.4 Ampere-type differential forms and a continuity equation
	4.1.5 Faraday-type differential forms and four-potential
	4.1.6 Maxwell’s equations
		4.1.6.1 Basic equations in the theory of electromagnetic fields
	4.1.7 Integral formulations of the differential form equations for Maxwell’s field and force field
		4.1.7.1 Faraday’s electromagnetic induction law
		4.1.7.2 Integral formulation of Ampere’s law
		4.1.7.3 Integral equations for Maxwell’s field and force field in the frequency domain
	4.1.8 Numerical modeling using differential forms
	4.1.9 Conclusion
	Acknowledgment
	References
	Further reading
4.2 Three-dimensional electromagnetic holographic imaging in active monitoring of sea-bottom geoelectrical structures
	4.2.1 Introduction
	4.2.2 Marine controlled-source electromagnetic method
	4.2.3 Frequency domain electromagnetic migration of marine controlled-source electromagnetic data
	4.2.4 Electromagnetic imaging using joint migration of electric and magnetic fields
	4.2.5 Regularized iterative migration
	4.2.6 Migration of synthetic marine controlled-source electromagnetic data
		4.2.6.1 Model 1
		4.2.6.2 Model 2
	4.2.7 Inversion of Troll gas province marine controlled-source electromagnetic data
	4.2.8 Conclusion
	Acknowledgments
	References
	Further reading
4.3 Foundations of the method of electromagnetic field separation in upgoing and downgoing parts and its application to mar...
	4.3.1 Introduction
	4.3.2 Integral transforms of electromagnetic fields using Stratton–Chu type integrals
		4.3.2.1 Basic equations of upgoing and downgoing fields
		4.3.2.2 Application of the Stratton–Chu type integrals for field separation
	4.3.3 Spatial Fourier transform method of electromagnetic field separation into upgoing and downgoing parts
		4.3.3.1 Electromagnetic field in the (k, ω) domain
		4.3.3.2 Separation of the observed electromagnetic field into upgoing and downgoing components
		4.3.3.3 Convolution form of decomposition operators
	4.3.4 Electromagnetic field separation into upgoing and downgoing parts using horizontal gradients
	4.3.5 Numerical examples of marine electromagnetic data decomposition
		4.3.5.1 Model 1
		4.3.5.2 Model 2
	4.3.6 Conclusions
	Acknowledgments
	References
	Further reading
	Appendix A: Stratton–Chu integral formulas
	Appendix B: Stratton–Chu type integrals and their properties
Section 5: Signal processing in active monitoring and case histories
5.1 Effect of spatial sampling on time-lapse seismic monitoring in random heterogeneous media
	5.1.1 Introduction
	5.1.2 Proper spatial sampling interval in seismic reflection
	5.1.3 Numerical simulations
		5.1.3.1 Random heterogeneous model
		5.1.3.2 Wavefield calculation
	5.1.4 Results
		5.1.4.1 Stacked and migrated sections
			5.1.4.1.1 Common mid-point stacked sections
			5.1.4.1.2 Poststack migrated sections
		5.1.4.2 Difference sections
			5.1.4.2.1 Differences between base and monitor sections
			5.1.4.2.2 Interpretation of difference sections
	5.1.5 Discussion
		5.1.5.1 Independent time-series noise and induced scattered wave noise
		5.1.5.2 Spatial sampling interval and the truncation artifact
		5.1.5.3 Characteristics of random heterogeneous media
	5.1.6 Conclusion
	References
5.2 Characteristics of ACROSS signals from transmitting stations in the Tokai area and observed by Hi-net*
	5.2.1 Introduction
	5.2.2 Data and methods
	5.2.3 Transfer function
	5.2.4 Temporal variation in transfer function
	5.2.5 Conclusion and future plan
	Acknowledgments
	References
5.3 Stacking strategy for acquisition of an Accurately Controlled Routinely Operated Signal System transfer function*
	5.3.1 Introduction
	5.3.2 Methodology
		5.3.2.1 Property of signal and noise in Accurately Controlled Routinely Operated Signal System data
		5.3.2.2 Derivation of optimum weight
		5.3.2.3 Successive stacking for larger signal-to-noise ratio
		5.3.2.4 Application of optimum weighted stacking method
	5.3.3 Conclusion
	Acknowledgment
	References
5.4 Wave fields from powerful vibrators in active seismology and depth seismic researches
	5.4.1 Introduction
	5.4.2 Work method
	5.4.3 Monitoring investigations
	5.4.4 Recording range and wave fields
	5.4.5 Conclusions
	References
5.5 Features of radiation of powerful vibrators on inhomogeneous soils
	5.5.1 Introduction
	5.5.2 Characteristics of radiation of a 40-t vibrator
	5.5.3 Conclusion
	References
5.6 Time-lapse approach to detect possible preslip associated with the Nankai Trough mega-earthquake by monitoring the temp...
	5.6.1 Introduction
	5.6.2 Field study and data processing
	5.6.3 Results
	5.6.4 Discussion and conclusions
	Acknowledgments
	References
5.7 Active and passive monitoring toward geophysical understanding of offshore interplate seismogenesis
	5.7.1 Introduction
	5.7.2 Japanese cabled observatories
	5.7.3 Scientific advances brought about by the cabled observatories
		5.7.3.1 Earthquake studies
		5.7.3.2 Tsunami studies
		5.7.3.3 Geodetic studies
	5.7.4 Advances in asperity study
	5.7.5 Exertion of earthquake monitoring capability
	5.7.6 Discussion
		5.7.6.1 Passive monitoring of seismogenic processes
		5.7.6.2 Active monitoring
		5.7.6.3 The inclusion of space–time axes in observations
	5.7.7 Conclusion
	References
5.8 Accurately controlled and routinely operated signal system time lapse for a field study in a desert area of Saudi Arabia
	5.8.1 Introduction
	5.8.2 Test site, equipment, and field study
	5.8.3 Accurately controlled and routinely operated signal system data processing
	5.8.4 Results
		5.8.4.1 Observed seismic records
		5.8.4.2 Seismic refraction survey and estimated 1D velocity structure
		5.8.4.3 Temporal changes detected by accurately controlled and routinely operated signal system
		5.8.4.4 Simultaneous passive seismic observations
	5.8.5 Discussion
	5.8.6 Conclusion
	Acknowledgments
	References
	Further reading
5.9 Time-lapse imaging of air injection using the ultrastable ACROSS seismic source and reverse-time imaging method
	5.9.1 Introduction
	5.9.2 Injection experiment on Awaji Island and data processing
	5.9.3 Observations
	5.9.4 Imaging by residual waveforms
	5.9.5 Discussion
	5.9.6 Summary and conclusion
	Acknowledgments
	References
	Further reading
Section 6: Case histories of the active monitoring in carbon capture and storage (CCS)
6.1 Active surface and borehole seismic monitoring of a small supercritical CO2 injection into the subsurface: experience f...
	6.1.1 Introduction
	6.1.2 Seismic monitoring approach and data acquisition
		6.1.2.1 Buried receiver array design and deployment
		6.1.2.2 Acquisition of the baseline and monitor surface seismic and 3D vertical seismic profiling surveys
		6.1.2.3 Zero-offset and offset vertical seismic profiling
		6.1.2.4 Continuous monitoring
	6.1.3 4D surface seismic data analysis
		6.1.3.1 Data processing
		6.1.3.2 Results
			6.1.3.2.1 Noise analysis
			6.1.3.2.2 Time-lapse plume evolution
			6.1.3.2.3 Repeatability
	6.1.4 4D vertical seismic profiling data analysis
		6.1.4.1 Data processing
		6.1.4.2 Results
	6.1.5 Time-lapse zero-offset and offset vertical seismic profiling data analysis
		6.1.5.1 Data processing
		6.1.5.2 Results
	6.1.6 Conclusions
	Acknowledgments
	References
6.2 Geophysical monitoring of the injection and postclosure phases at the Ketzin pilot site
	6.2.1 The Ketzin pilot site—site infrastructure, CO2 injection, closure and postclosure operation
		6.2.1.1 CO2 injection
		6.2.1.2 CO2 back-production
		6.2.1.3 Brine injection
	6.2.2 Site characterization—site geology and reservoir model
		6.2.2.1 General setting
		6.2.2.2 The reservoir model of the Ketzin site
	6.2.3 Geophysical monitoring
		6.2.3.1 Introduction
		6.2.3.2 Well logging and permanent monitoring
			6.2.3.2.1 Permanent sensor cables
			6.2.3.2.2 Pulsed neutron-gamma wireline logging
			6.2.3.2.3 Evolution of saturation conditions
			6.2.3.2.4 Pulsed neutron gamma results for the first 3D seismic repeat survey (2009)
			6.2.3.2.5 Pulsed neutron gamma results for the second 3D seismic repeat survey (2012)
			6.2.3.2.6 Pulsed neutron gamma results for the third 3D seismic repeat survey (2015)
		6.2.3.3 Seismic monitoring
			6.2.3.3.1 Introduction
			6.2.3.3.2 4D seismic
			6.2.3.3.3 Star profiles
		6.2.3.4 Geoelectric monitoring
			6.2.3.4.1 Motivation and background of geoelectric monitoring
		6.2.3.5 Ketzin monitoring system design and deployment
		6.2.3.6 Data acquisition, processing, and inversion
		6.2.3.7 Key results from crosshole and surface-downhole measurements
		6.2.3.8 Lessons learned from geoelectric monitoring
	6.2.4 Numerical simulations of multiphase flow
	6.2.5 Conclusion
	References
6.3 Geophysical monitoring at the Nagaoka pilot-scale CO2 injection site in Japan
	6.3.1 Introduction
	6.3.2 Monitoring methods at the Nagaoka site
		6.3.2.1 Initial design of the monitoring program
		6.3.2.2 Monitoring method during the injection and postinjection periods
	6.3.3 Results
		6.3.3.1 Continuous pressure measurement
		6.3.3.2 Time-lapse well logging
		6.3.3.3 Cross-well tomography
		6.3.3.4 3D seismic surveys
	6.3.4 Discussion
	6.3.5 Concluding remarks
	Acknowledgments
	References
	Further reading
6.4 Comprehensive seismic monitoring of an onshore carbonate reservoir: a case study from a desert environment
	6.4.1 Introduction
	6.4.2 Time-lapse (4D) seismic background
	6.4.3 Feasibility tests
	6.4.4 Test configuration
		6.4.4.1 Permanent reservoir monitoring (buried source, buried receiver)
		6.4.4.2 Semi-permanent reservoir monitoring (surface source, buried receiver)
	6.4.5 Repeating the source
	6.4.6 Image quality and repeatability
	6.4.7 Final survey design and data acquisition
	6.4.8 Source positioning accuracy
	6.4.9 Seasonal data repeatability
	6.4.10 4D seismic processing
	6.4.11 Workflow
		6.4.11.1 Linear noise filtering
		6.4.11.2 Surface-consistent amplitude balancing and deconvolution
		6.4.11.3 Residual statics
		6.4.11.4 Supergrouping
		6.4.11.5 Migration
	6.4.12 Final image repeatability
	6.4.13 Seismic monitoring
	6.4.14 Conclusion
	Acknowledgments
	References
Index
Back Cover




نظرات کاربران