دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1
نویسندگان: Nicholas J. Higham
سری:
ISBN (شابک) : 9780898718027, 0898718023
ناشر: Society for Industrial and Applied Mathematics (SIAM)
سال نشر: 1996
تعداد صفحات: 718
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 6 مگابایت
در صورت تبدیل فایل کتاب Accuracy and Stability of Numerical Algorithms به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب دقت و پایداری الگوریتم های عددی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Contents List of Figures List of Tables Preface About the Dedication Chapter 1. Principles of Finite Precision Computation 1.1. Notation and Background 1.2. Relative Error and Significant Digits 1.3. Sources of Errors 1.4. Precision Versus Accuracy 1.5. Backward and Forward Errors 1.6. Conditioning 1.7. Cancellation 1.8. Solving a Quadratic Equation 1.9. Computing the Sample Variance 1.10. Solving Linear Equations 1.11. Accumulation of Rounding Errors 1.12. Instability Without Cancellation 1.13. Increasing the Precision 1.14. Cancellation of Rounding Errors 1.15. Rounding Errors Can Be Beneficial 1.16. Stability of an Algorithm Depends on the Problem 1.17. Rounding Errors Are Not Random 1.18. Designing Stable Algorithms 1.19. Misconceptions 1.20. Rounding Errors in Numerical Analysis 1.21. Notes and References Problems Chapter 2. Floating Point Arithmetic 2.1. Floating Point Number System 2.2. Model of Arithmetic 2.3. IEEE Arithmetic 2.4. Aberrant Arithmetics 2.5. Choice of Base and Distribution of Numbers 2.6. Statistical Distribution of Rounding Errors 2.7. Alternative Number Systems 2.8. Accuracy Tests 2.9. Notes and References Problems Chapter 3. Basics 3.1. Inner and Outer Products 3.2. The Purpose of Rounding Error Analysis 3.3. Running Error Analysis 3.4. Notation for Error Analysis 3.5. Matrix Multiplication 3.6. Complex Arithmetic 3.7. Miscellany 3.8. Error Analysis Demystified 3.9. Other Approaches 3.10. Notes and References Problems Chapter 4. Summation 4.1. Summation Methods 4.2. Error Analysis 4.3. Compensated Summation 4.4. Other Summation Methods 4.5. Statistical Estimates of Accuracy 4.6. Choice of Method 4.7. Notes and References Problems Chapter 5. Polynomials 5.1. Horner’s Method 5.2. Evaluating Derivatives 5.3. The Newton Form and Polynomial Interpolation 5.4. Notes and References Problems Chapter 6. Norms 6.1. Vector Norms 6.2. Matrix Norms 6.3. The Matrix p-Norm 6.4. Notes and References Problems Chapter 7. Perturbation Theory for Linear Systems 7.1. Normwise Analysis 7.2. Componentwise Analysis 7.3. Scaling to Minimize the Condition Number 7.4. The Matrix Inverse 7.5. Extensions 7.6. Numerical Stability 7.7. Practical Error Bounds 7.8. Perturbation Theory by Calculus 7.9. Notes and References Problems Chapter 8. Triangular Systems 8.1. Backward Error Analysis 8.2. Forward Error Analysis 8.3. Bounds for the Inverse 8.4. A Parallel Fan-In Algorithm 8.5. Notes and References Problems Chapter 9. LU Factorization and Linear Equations 9.1. Gaussian Elimination 9.2. Error Analysis 9.3. The Growth Factor 9.4. Special Matrices 9.5. Tridiagonal Matrices 9.6. Historical Perspective 9.7. Scaling 9.8. A Posteriori Stability Tests 9.9. Sensitivity of the LU Factorization 9.10. Notes and References Problems Chapter 10. Cholesky Factorization 10.1. Symmetric Positive Definite 10.2. Sensitivity of the Cholesky Factorization 10.3. Positive Semidefinite Matrices 10.4. Symmetric Indefinite Matrices and Diagonal Pivoting Method 10.5. Nonsymmetric Positive Definite Matrices 10.6. Notes and References Problems Chapter 11. Iterative Refinement 11.1. Convergence of Iterative Refinement 11.2. Iterative Refinement Implies Stability 11.3. Notes and References Problems Chapter 12. Block LU Factorization 12.1. Block Versus Partitioned LU Factorization 12.2. Error Analysis of Partitioned LU Factorization 12.3. Error Analysis of Block LU Factorization 12.4. Notes and References Problems Chapter 13. Matrix Inversion 13.1. Use and Abuse of the Matrix Inverse 13.2. Inverting a Triangular Matrix 13.3. Inverting a Full Matrix by LU Factorization 13.4. Gauss–Jordan Elimination 13.5. The Determinant 13.6. Notes and References Problems Chapter 14. Condition Number Estimation 14.1. How to Estimate Componentwise Condition Numbers 14.2. The p-Norm Power Method 14.3. LAPACK 1-Norm Estimator 14.4. Other Condition Estimators 14.5. Condition Numbers of Tridiagonal Matrices 14.6. Notes and References Problems Chapter 15. The Sylvester Equation 15.1. Solving the Sylvester Equation 15.2. Backward Error 15.3. Perturbation Result 15.4. Practical Error Bounds 15.5. Extensions 15.6. Notes and References Problems Chapter 16. Stationary Iterative Methods 16.1. Survey of Error Analysis 16.2. Forward Error Analysis 16.3. Backward Error Analysis 16.4. Singular Systems 16.5. Stopping an Iterative Method 16.6. Notes and References Problems Chapter 17. Matrix Powers 17.1. Matrix Powers in Exact Arithmetic 17.2. Bounds for Finite Precision Arithmetic 17.3. Application to Stationary Iteration 17.4. Notes and References Problems Chapter 18. QR Factorization 18.1. Householder Transformations 18.2. QR Factorization 18.3. Error Analysis of Householder Computations 18.4. Aggregated Householder Transformations 18.5. Givens Rotations 18.6. Iterative Refinement 18.7. Gram–Schmidt Orthogonalization 18.8. Sensitivity of the QR Factorization 18.9. Notes and References Problems Chapter 19. The Least Squares Problem 19.1. Perturbation Theory 19.2. Solution by QR Factorization 19.3. Solution by the Modified Gram–Schmidt Method 19.4. The Normal Equations 19.5. Iterative Refinement 19.6. The Seminormal Equations 19.7. Backward Error 19.8. Proof of Wedin’s Theorem 19.9. Notes and References Problems Chapter 20. Underdetermined Systems 20.1. Solution Methods 20.2. Perturbation Theory 20.3. Error Analysis 20.4. Notes and References Problems Chapter 21. Vandermonde Systems 21.1. Matrix Inversion 21.2. Primal and Dual Systems 21.3. Stability 21.4. Notes and References Problems Chapter 22. Fast Matrix Multiplication 22.1. Methods 22.2. Error Analysis 22.3. Notes and References Problems Chapter 23. The Fast Fourier Transform and Applications 23.1. The Fast Fourier Transform 23.2. Circulant Linear Systems 23.3. Notes and References Problems Chapter 24. Automatic Error Analysis 24.1. Exploiting Direct Search Optimization 24.2. Direct Search Methods 24.3. Examples of Direct Search 24.4. Interval Analysis 24.5. Other Work 24.6. Notes and References Problems Chapter 25. Software Issues in Floating Point Arithmetic 25.1. Exploiting IEEE Arithmetic 25.2. Subtleties of Floating Point Arithmetic 25.3. Cray Peculiarities 25.4. Compilers 25.5. Determining Properties of Floating Point Arithmetic 25.6. Testing a Floating Point Arithmetic 25.7. Portability 25.8. Avoiding Underflow and Overflow 25.9. Multiple Precision Arithmetic 25.10. Patriot Missile Software Problem 25.11. Notes and References Problems Chapter 26. A Gallery of Test Matrices 26.1. The Hilbert and Cauchy Matrices 26.2. Random Matrices 26.3. “Randsvd” Matrices 26.4. The Pascal Matrix 26.5. Tridiagonal Toeplitz Matrices 26.6. Companion Matrices 26.7. Notes and References Problems Appendix A. Solutions to Problems 1.1-1.4 1.5-1.7 1.8-1.9 1.10-2.1 2.2-2.7 2.8-2.15 2.17-2.21 2.22-2.24 2.25-2.27 3.1-3.3 3.4-3.7 3.8-3.10 3.11-3.12 4.1-4.3 4.4-4.8 5.1-5.3 5.4-6.2 6.3-6.8 6.9-6.14 6.15-7.1 7.2-7.7 7.8-7.9 7.10-7.11 7.12-7.13 7.14-8.4 8.5-8.8 8.10-9.3 9.4-9.9 9.10-10.3 10.4-10.9 10.10-10.14 10.15-10.17 11.1-12.1 12.2-12.5 12.7-13.5 13.6-13.7 13.11-13.14 13.15-15.2 15.3-16.2 17.1-17.2 18.1-18.8 18.9-18.12 18.13-19.3 19.4-19.6 19.7-21.4 21.5-21.10 22.1-25.1 25.3-25.4 25.5-25.8 Appendix B. Singular Value Decomposition, M-Matrices Appendix C. Acquiring Software Appendix D. Program Libraries Appendix E. The Test Matrix Toolbox Bibliography 1-13 14-29 30-44 45-58 59-73 74-89 90-104 105-121 122-137 138-152 153-169 170-186 187-203 204-218 219-234 235-250 251-267 268-285 286-299 300-313 314-329 330-346 347-364 365-379 380-396 397-412 413-428 429-444 445-460 461-478 479-492 493-507 508-524 525-541 542-557 558-570 571-587 588-602 603-617 618-632 633-649 650-666 667-682 683-698 699-717 718-737 738-756 757-775 776-794 795-812 813-830 831-846 847-864 865-882 883-898 899-915 916-931 932-949 950-968 969-985 986-1001 1002-1016 1017-1034 1035-1052 1053-1066 1067-1082 1083-1099 1100-1114 1115-1134 Name Index Subject Index