ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Accelerated Plant Breeding, Volume 4: Oil Crops

دانلود کتاب اصلاح نباتات تسریع شده، جلد 4: محصولات روغنی

Accelerated Plant Breeding, Volume 4: Oil Crops

مشخصات کتاب

Accelerated Plant Breeding, Volume 4: Oil Crops

دسته بندی: گیاهان: کشاورزی و جنگلداری
ویرایش:  
نویسندگان:   
سری:  
ISBN (شابک) : 3030811069, 9783030811068 
ناشر: Springer 
سال نشر: 2022 
تعداد صفحات: 557 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 13 مگابایت 

قیمت کتاب (تومان) : 48,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 8


در صورت تبدیل فایل کتاب Accelerated Plant Breeding, Volume 4: Oil Crops به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب اصلاح نباتات تسریع شده، جلد 4: محصولات روغنی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب اصلاح نباتات تسریع شده، جلد 4: محصولات روغنی

بهبود گیاه تمرکز خود را از عملکرد، کیفیت و مقاومت به بیماری به عواملی تغییر داده است که صادرات تجاری را افزایش می‌دهند، مانند بلوغ زودرس، ماندگاری و کیفیت پردازش بهتر. روش های مرسوم اصلاح نباتات با هدف بهبود یک محصول خود گرده افشان معمولاً 10-12 سال طول می کشد تا توسعه و رهاسازی گونه جدید انجام شود. در طول 10 سال گذشته، پیشرفت‌های قابل توجهی صورت گرفته و روش‌های سریع‌تری برای اصلاح دقیق و رهاسازی زودهنگام واریته‌های زراعی توسعه یافته است.

این کتاب بر فناوری‌های اصلاح سریعی که برای محصولات عمده روغنی به کار گرفته شده‌اند، تمرکز دارد. این خلاصه مفاهیم مربوط به افزایش ژرم پلاسم و توسعه واریته‌های بهبود یافته بر اساس روش‌های نوآورانه است که شامل هاپلوئیدی مضاعف، انتخاب به کمک نشانگر، انتخاب پس‌زمینه به کمک نشانگر، نقشه‌برداری ژنتیکی، انتخاب ژنومی، ژنوتیپ‌سازی با توان عملیاتی بالا، فنوتیپ با توان بالا، اصلاح جهش، معکوس می‌شود. اصلاح نژاد، پرورش تراریخته، پرورش شاتل، اصلاح سریع، فنوتیپ سازی مزرعه با توان عملیاتی کم هزینه، و غیره. بنابراین این جلد ویرایش شده یک مرجع عالی برای توسعه سریع واریته های محصولات زراعی بهبود یافته است.

توضیحاتی درمورد کتاب به خارجی

Plant improvement has shifted its focus from yield, quality and disease resistance to factors that will enhance commercial export, such as early maturity, shelf life and better processing quality. Conventional plant breeding methods aiming at the improvement of a self-pollinating crop usually take 10-12 years to develop and release of the new variety. During the past 10 years, significant advances have been made and accelerated methods have been developed for precision breeding and early release of crop varieties. 

This book focuses on the accelerated breeding technologies that have been adopted for major oil crops. It summarizes concepts dealing with germplasm enhancement and development of improved varieties based on innovative methodologies that include doubled haploidy, marker assisted selection, marker assisted background selection, genetic mapping, genomic selection, high-throughput genotyping, high-throughput phenotyping, mutation breeding, reverse breeding, transgenic breeding, shuttle breeding, speed breeding, low cost high-throughput field phenotyping, etc. This edited volume is therefore an excellent reference on accelerated development of improved crop varieties.


فهرست مطالب

Foreword
Preface
Contents
Chapter 1: Breeding Major Oilseed Crops: Prospects and Future Research Needs
	1.1 Introduction
	1.2 Genetic Resources and International Institutions
		1.2.1 Gene Pools
		1.2.2 Primary Gene Pool
		1.2.3 Secondary, Tertiary, and Quaternary Gene Pools
		1.2.4 Utilization of Genetic Resources in Oil Crops
	1.3 Mode of Pollination and Breeding Behavior in Oil Crops
	1.4 Major Goals of Oil Crop Breeding, Achievements and Strategies
		1.4.1 High Seed Yield
		1.4.2 Increasing Seed Oil Content
		1.4.3 Breeding for Improvement of Quality Traits in Oil Crops
			1.4.3.1 Genetic Improvement of Fatty Acid Composition
		1.4.4 Genetic Engineering in Oil Crops and Identification of Genes for Novel Traits
	1.5 Future Research Strategies
	References
Chapter 2: Accelerating Soybean Improvement Through Genomics-Assisted Breeding
	2.1 Introduction
	2.2 Genetic Resources in Soybean
		2.2.1 Wild and Cultivated Species of Soybean
		2.2.2 Global Soybean Germplasm Collections
	2.3 Speed Breeding
	2.4 Mutagenesis in Soybean
	2.5 Marker-Assisted Breeding
	2.6 Genomic Selection
	2.7 Genome Editing for Precision Breeding
	2.8 Challenges in Soybean Improvement and Future Directions
	References
Chapter 3: Genetic Enhancement of Groundnut: Current Status and Future Prospects
	3.1 Introduction
	3.2 Constraints to Groundnut Production
	3.3 Status of Groundnut Breeding
		3.3.1 Wealth of Groundnut Genetic Resources
			3.3.1.1 Cultivated Genetic Resources
			3.3.1.2 Wild Arachis Genetic Resources
	3.4 Desirable Traits in Arachis Species for Crop Improvement
	3.5 Conventional Breeding Approaches
	3.6 Yield Gap Analysis and Impact of Improved Technologies in Groundnut
		3.6.1 Impact of Improved Varieties and Production Technologies on Productivity of Groundnut
		3.6.2 Genetic Enhancement Through Release and Cultivation of Improved Groundnut Varieties with Multiple Biotic/Abiotic Stress Tolerance
		3.6.3 Breeder Seed Production of Improved Groundnut Varieties in India
		3.6.4 A Success Story of GPBD 4 from UAS, Dharwad: Model for Adoption of Improved Groundnut Varieties in Farmer’s Field in India
	3.7 Rapid Generation Advancement and Speed Breeding in Groundnut
	3.8 Genomic-Assisted Breeding in Groundnut
	3.9 Genomics of Biotic Stress Tolerance
	3.10 Genomics of Abiotic Stress Tolerance
	3.11 Transformation
	3.12 Conclusion and Future Perspective
	References
Chapter 4: Recent Advances in Genetics, Genomics, and Breeding for Nutritional Quality in Groundnut
	4.1 Introduction
	4.2 Ready-to-Use Therapeutic Foods (RUTF) Made from Groundnut
	4.3 Nutritional Value of Groundnut
		4.3.1 Protein
		4.3.2 Fatty Acids
		4.3.3 Dietary Fibers and Micronutrients
		4.3.4 Resveratrol
	4.4 Genomics of Nutritional Quality Traits in Groundnut
		4.4.1 Linkage Mapping
		4.4.2 Association Mapping
	4.5 Breeding Biofortified Groundnut Varieties
	4.6 Anti-nutritional Compounds
	4.7 Summary
	References
Chapter 5: Accelerated Breeding for Brassica Crops
	5.1 Introduction
	5.2 Brassica Breeding Programs
	5.3 Doubled Haploidy
		5.3.1 Pre-isolation Conditions
		5.3.2 Post-isolation Conditions
		5.3.3 Donor Plant Conditions
		5.3.4 Developmental Stage of the Pollen Grain
		5.3.5 Microspore Culture
			5.3.5.1 Culture Conditions
		5.3.6 Embryo Culture
		5.3.7 Plantlet Culture
		5.3.8 Plantlet Transfer to Soil
		5.3.9 Chromosome Doubling
	5.4 Speed Breeding
	5.5 Genetic Engineering
		5.5.1 Cotyledonary Petiole Transformation [Bulk Inoculation and Co-cultivation, from Lee (1996), as Modified from Moloney et al. (1989)]
			5.5.1.1 Seed Sterilization and Germination
			5.5.1.2 Agrobacterium Preparation
			5.5.1.3 Explant Preparation
			5.5.1.4 Inoculation with Agrobacterium
			5.5.1.5 Selection and Regeneration
			5.5.1.6 Shoot Elongation
			5.5.1.7 Rooting
		5.5.2 Brassica napus Hypocotyl Transformation
			5.5.2.1 Seed Sterilization and Germination
			5.5.2.2 Explant Preparation
			5.5.2.3 Co-cultivation
			5.5.2.4 Callus Induction
			5.5.2.5 Shoot Induction
			5.5.2.6 Shoot Elongation
			5.5.2.7 Rooting and Planting
	5.6 Conclusion
	References
Chapter 6: Achieving Genetic Gain for Yield, Quality and Stress Resistance in Oilseed Brassicas Through Accelerated Breeding
	6.1 Introduction
	6.2 Accelerated Plant Breeding
		6.2.1 Rapid Generation Advancement (RGA)
		6.2.2 Shuttle Breeding
		6.2.3 Doubled Haploidy
			6.2.3.1 In Vitro Haploid Production
			6.2.3.2 In Vivo Haploid Production
		6.2.4 Marker-Assisted Selection (MAS)
		6.2.5 Genomic Selection
	6.3 Special Implications of Accelerated Breeding in Brassica Improvement
		6.3.1 Development of Genetic Resources
		6.3.2 Recombination and Mutation Breeding
		6.3.3 Resynthesis of Amphidiploids
		6.3.4 Wide Hybridization
	6.4 Conclusion
	References
Chapter 7: Genomic-Assisted Breeding for Enhanced Harvestable (Pod) and Consumable (Seed) Product, Yield Productivity in Groundnut (Arachis hypogaea L.)
	7.1 Introduction
	7.2 Nutritional Composition of Groundnut Kernels
	7.3 Taxonomy and Evolution
	7.4 Germplasm and Genetic Resources
	7.5 Genetics of Quantitative Traits
	7.6 Varietal Development
	7.7 Major Constraints
		7.7.1 Yield and Yield-Related Traits
		7.7.2 Quality Traits
		7.7.3 Biotic Stresses
			7.7.3.1 Leaf Spots
			7.7.3.2 Rust
			7.7.3.3 The Stem/Pod Rot and Peanut Bud Necrosis
			7.7.3.4 Rosette
			7.7.3.5 Aflatoxin
		7.7.4 Abiotic Stress
	7.8 Genomic Resources
	7.9 Mapping Populations and Marker-Trait Associations in Groundnut
	7.10 Genomic-Assisted Breeding for Trait Improvement
	7.11 Advanced-Backcross QTL Analysis-Based Breeding (AB-Breeding)
	7.12 Rapid Generation Advancement/Speed Breeding
	7.13 Conclusion
	References
Chapter 8: Genomics-Assisted Breeding for Resistance to Leaf Spots and Rust Diseases in Peanut
	8.1 Introduction
	8.2 Loss of Pod Yield Due to Leaf Spots and Rust
	8.3 Symptoms of Leaf Spots and Rust Diseases
		8.3.1 Early Leaf Spot
		8.3.2 Late Leaf Spot
		8.3.3 Rust
	8.4 Components of Resistance to Leaf Spots and Rust
		8.4.1 Early Leaf Spot
		8.4.2 Late Leaf Spot
		8.4.3 Rust
	8.5 Genetics of Resistance
	8.6 Sources of Resistance
	8.7 Breeding for Foliar Disease Resistance
	8.8 Genomics-Assisted Breeding
		8.8.1 Marker Development
		8.8.2 Mapping of Resistance to Leaf Spots and Rust
		8.8.3 Association Mapping
		8.8.4 QTL Validation
	8.9 Transcriptomics
	8.10 Proteomics
	8.11 Epigenomics
	8.12 Marker-Assisted Backcrossing (MABC) for Foliar Disease Resistance
	8.13 Transgenic Approach
	8.14 Conclusions and Future Perspectives
	References
Chapter 9: Safflower Improvement: Conventional Breeding and Biotechnological Approach
	9.1 Introduction
	9.2 Description About the Crop
		9.2.1 Germplasm Resources
		9.2.2 Conventional Breeding
		9.2.3 Seed Related Traits
		9.2.4 Nutritional Parameters
		9.2.5 Non-spiny Type
		9.2.6 Nutritional Properties
		9.2.7 Yield and Yield Components
		9.2.8 Inheritance to Biotic and Abiotic Stresses
	9.3 Safflower Improvement: Conventional Breeding
		9.3.1 Breeding Methods
			9.3.1.1 Introduction and Pure Line Selection
			9.3.1.2 Hybridization
				Pedigree
				Bulk Population Method
				Single-Seed Descent Method
				Recurrent Selection (Backcrossing)
		9.3.2 Hybrid Breeding
			9.3.2.1 Single Recessive Genetic Male Sterility
			9.3.2.2 Dominant Genetic Male Sterility
			9.3.2.3 Cytoplasmic-Genetic Male Sterility
	9.4 Safflower Improvement: Biotechnology
		9.4.1 Molecular Markers
			9.4.1.1 Genetic Diversity
			9.4.1.2 Phylogenetic Analysis
			9.4.1.3 Genomics and Marker-Assisted Selection
			9.4.1.4 Transcriptomics and Proteomics
		9.4.2 Tissue Culture
		9.4.3 Genetic Engineering
	9.5 Breeding for End Use
		9.5.1 Disease Resistance
		9.5.2 Oil Content and Quality
		9.5.3 Insect Resistance
		9.5.4 Spineless Safflower
	9.6 Future Direction
	References
Chapter 10: Enhancing Genetic Gain in Coconut: Conventional, Molecular, and Genomics-Based Breeding Approaches
	10.1 Introduction
	10.2 Coconut Genetic Resources
	10.3 Coconut Breeding: Current Status
	10.4 Breeding Programs
		10.4.1 Coconut Breeding Program in India
			10.4.1.1 Selection
			10.4.1.2 Exploitation of Hybrid Vigor
		10.4.2 Coconut Breeding Program in Sri Lanka
		10.4.3 Coconut Breeding Program in Indonesia
		10.4.4 Coconut Breeding Program in the Philippines
		10.4.5 Coconut Breeding Program in Thailand
		10.4.6 Coconut Breeding Program in Vietnam
		10.4.7 Coconut Breeding Program in Papua New Guinea
		10.4.8 Coconut Breeding Program in Fiji
		10.4.9 Coconut Breeding Program in Vanuatu
		10.4.10 Coconut Breeding Program in Côte d’Ivoire
		10.4.11 Coconut Breeding Program in Ghana
		10.4.12 Coconut Breeding Programs in Other Countries
			10.4.12.1 Bangladesh
			10.4.12.2 China
			10.4.12.3 Tanzania
			10.4.12.4 Mexico
	10.5 Application of Molecular Markers in Coconut Improvement Programs
	10.6 Genetic Linkage Maps in Coconut: QTL Mapping
	10.7 Whole-Genome Assemblies
		10.7.1 Genome Assembly of the Chinese Hainan Tall Cultivar
		10.7.2 The Genome of the Philippine Cultivar Catigan Green Dwarf
		10.7.3 Genome of Disease-Resistant Cultivar Chowghat Green Dwarf
	10.8 Multiple Omics Approaches in Coconut
	10.9 Conclusions and Recommendations
	References
Chapter 11: Biotechnological Approaches for Genetic Improvement of Castor Bean (Ricinus communis L.)
	11.1 Introduction
		11.1.1 Genetic Improvement
		11.1.2 Breeding
	11.2 Genomics-Assisted Breeding Approach
		11.2.1 Genetic Resources
			11.2.1.1 Germplasm Stocks
		11.2.2 Genomic Resources
			11.2.2.1 Molecular Markers: Development and Utility in Genetic Diversity Studies
			11.2.2.2 Genome Sequence-Based Resources
				Genome Sequence-Based Studies
				Genetic Linkage Map
				Comparative Genomic Study
	11.3 Genetic Engineering
		11.3.1 Basic Requirements for Genetic Engineering
			11.3.1.1 Tissue Culture
				Explant Optimization
				Media, Growth Regulators, and Culture Conditions
			11.3.1.2 Selection Markers
			11.3.1.3 Transformation Protocols
				In Vitro Culture-Based Transformation Techniques
				Tissue Culture-Independent Transformation Techniques
					In Planta Transformation Techniques
	11.4 Biotechnological Approaches Against Biotic Stress Factors in Castor Bean
		11.4.1 Transgenics with Insect Pest Tolerance or Resistance
		11.4.2 Biotechnological Approaches for Disease Tolerance
			11.4.2.1 Biotechnology Against Gray Mold Disease
			11.4.2.2 Biotechnology Against Charcoal Disease
			11.4.2.3 Biotechnology Against Fusarium Wilt Disease
		11.4.3 Biotechnology for Weedicide-Resistance Engineering
	11.5 Biotechnological Approaches Against Abiotic Stress Factors in Castor Bean Crop
		11.5.1 Biotechnology for Imparting Drought Tolerance
		11.5.2 Biotechnology for Imparting Salt Tolerance
		11.5.3 Heavy Metal Tolerance in Castor Bean
	11.6 Biotechnology for Plant-Type Engineering in Castor Bean
	11.7 Biotechnology for Oil-Quality Engineering in Castor Bean
	11.8 Biotechnology for Utilization of Castor Bean Oil Cake/Meal
		11.8.1 Castor Bean Oil Cake/Meal
		11.8.2 Conventional Approaches for Removing Antinutritional and Toxic Factors in Castor Cake
		11.8.3 Advanced Approaches for Removing Antinutritional and Toxic Factors in Castor Cake
			11.8.3.1 Genomic-Based Approaches
				Mutation Breeding
				Somaclonal Variations
				Gene Pyramiding
				Genetic Engineering
	11.9 Potential of Genome Editing in Castor Bean
	11.10 Omics Studies in Castor Bean
		11.10.1 Omics for Castor Bean Developmental Biology
		11.10.2 Omics for Castor Bean Abiotic Stress Biology
		11.10.3 Omics for Detecting Ricin
	11.11 Future Perspectives
	11.12 Conclusions
	References
Chapter 12: Genetic and Molecular Technologies for Achieving High Productivity and Improved Quality in Sunflower
	12.1 Introduction
	12.2 Origin, History and Botany
	12.3 Sunflower Genetic Resources
	12.4 Genetics of Breeding Objectives in Sunflower
	12.5 Induced Mutation to Facilitate Sunflower Breeding
	12.6 Reverse Genetics: TILLING and EcoTILLING
	12.7 Molecular Marker and Biotechnology Resources
	12.8 Genetic Engineering: New Breeding Techniques to Facilitate Sunflower Improvement
	12.9 Progress in Sunflower Hybrid Development in India
	12.10 Concluding Remarks
	References
Chapter 13: Genomic Cross Prediction for Linseed Improvement
	13.1 Introduction
	13.2 Strategy of Genomic Cross Prediction
		13.2.1 Genomic Cross Prediction
		13.2.2 Procedure of Genomic Cross Prediction
		13.2.3 Genetic Parameters for Cross-evaluation
	13.3 Software Tools for Genomic Cross Prediction
		13.3.1 Software Tools for Data Analysis
		13.3.2 A Pipeline Package of Genomic Cross Prediction
	13.4 Genomic Cross Prediction for Linseed Improvement
		13.4.1 Materials and Methods
			13.4.1.1 Training Population and Phenotypic and Genomic Data
			13.4.1.2 Identification of Quantitative Trait Nucleotides (QTNs)
			13.4.1.3 Construction of Genomic Selection Models
			13.4.1.4 Virtual Crosses and Simulation of Progeny Populations
			13.4.1.5 Evaluation of Virtual Crosses
		13.4.2 Results and Discussions
			13.4.2.1 Identification of Quantitative Trait Nucleotides (QTNs)
			13.4.2.2 Optimal GS Models
			13.4.2.3 General Combining Ability (GCA) of Parents
			13.4.2.4 Usefulness of Crosses
			13.4.2.5 Relationship of GCAs with Us
			13.4.2.6 Differences Between Parents with Genetic Variance of Progeny Populations
			13.4.2.7 Evaluation of Top Parents and Crosses
	13.5 Conclusions
	References
Chapter 14: Biotechnological Interventions for Improving Cottonseed Oil Attributes
	14.1 Introduction
	14.2 Composition of Cottonseed Oil
	14.3 Enhancing Cottonseed Oil Attributes Through Biotechnological Interventions
	14.4 Future Prospects
	References
Chapter 15: Advances in Classical and Molecular Breeding in Sesame (Sesamum indicum L.)
	15.1 Introduction
	15.2 Classical Breeding in Sesame
		15.2.1 High Seed Yield
		15.2.2 Early Maturity and Short Plant Stature
		15.2.3 High Oil Content
		15.2.4 Fatty Acid Compositions of Oil
		15.2.5 Shattering Resistance
		15.2.6 Abiotic Stress Tolerance
		15.2.7 Biotic Stress Tolerance
	15.3 Sesame Classical Breeding Methods
		15.3.1 Heterosis Breeding in Sesame
	15.4 Molecular Breeding in Sesame
		15.4.1 RFLP (Restriction Fragment Length Polymorphism)
		15.4.2 RAPD (Randomly Amplified Polymorphic DNA)
		15.4.3 AFLP (Amplified Fragment Length Polymorphism)
		15.4.4 SSR or Microsatellites (Simple Sequence Repeats)
		15.4.5 ISSR (Inter-simple Sequence Repeat)
		15.4.6 SNP (Single Nucleotide Polymorphism)
	15.5 Plant Tissue Culture in Sesame
	15.6 Concluding Remarks
	References
Index




نظرات کاربران