ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب A Practical Guide to Plastics Sustainability: Concept, Solutions, and Implementation (Plastics Design Library)

دانلود کتاب راهنمای عملی پایداری پلاستیک: مفهوم، راهکارها و اجرا (کتابخانه طراحی پلاستیک)

A Practical Guide to Plastics Sustainability: Concept, Solutions, and Implementation (Plastics Design Library)

مشخصات کتاب

A Practical Guide to Plastics Sustainability: Concept, Solutions, and Implementation (Plastics Design Library)

ویرایش: 1 
نویسندگان:   
سری: Plastics Design Library 
ISBN (شابک) : 0128215399, 9780128215395 
ناشر: William Andrew 
سال نشر: 2020 
تعداد صفحات: 677 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 20 مگابایت 

قیمت کتاب (تومان) : 42,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 2


در صورت تبدیل فایل کتاب A Practical Guide to Plastics Sustainability: Concept, Solutions, and Implementation (Plastics Design Library) به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب راهنمای عملی پایداری پلاستیک: مفهوم، راهکارها و اجرا (کتابخانه طراحی پلاستیک) نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب راهنمای عملی پایداری پلاستیک: مفهوم، راهکارها و اجرا (کتابخانه طراحی پلاستیک)



راهنمای عملی برای پایداری پلاستیک: مفهوم، راه حل ها و پیاده سازی یک کار مرجع پیشگامانه است که چشم اندازی گسترده، دقیق و بسیار کاربردی از مفهوم پیچیده پایداری در پلاستیک ارائه می دهد. هدف این کتاب ارائه طیف وسیعی از مسیرهای بالقوه به سمت قطعات و محصولات پلاستیکی پایدارتر است و خواننده را قادر می سازد تا ایده پایداری را در فرآیند طراحی خود ادغام کند. این مقاله با معرفی زمینه و مفهوم پایداری، بحث در مورد ادراکات، محرک‌های تغییر، عوامل کلیدی و مسائل زیست‌محیطی، قبل از ارائه یک طرح کلی از وضعیت فعلی با انواع پلاستیک‌ها، پردازش و فرصت‌های بهبود پایداری آغاز می‌شود.

فصل‌های بعدی بر احتمالات مختلف برای بهبود پایداری تمرکز می‌کنند و یک رویکرد فنی گام به گام در زمینه‌هایی از جمله طراحی، خواص، پلاستیک‌های تجدیدپذیر، و بازیافت و استفاده مجدد ارائه می‌دهند. هر یک از این ستون ها توسط داده ها، مثال ها، تجزیه و تحلیل و راهنمایی بهترین عملکرد پشتیبانی می شوند. در نهایت، آخرین پیشرفت ها و احتمالات آینده در نظر گرفته شده است.


توضیحاتی درمورد کتاب به خارجی

A Practical Guide to Plastics Sustainability: Concept, Solutions, and Implementation is a groundbreaking reference work offering a broad, detailed and highly practical vision of the complex concept of sustainability in plastics. The book's aim is to present a range of potential pathways towards more sustainable plastics parts and products, enabling the reader to further integrate the idea of sustainability into their design process. It begins by introducing the context and concept of sustainability, discussing perceptions, drivers of change, key factors, and environmental issues, before presenting a detailed outline of the current situation with types of plastics, processing, and opportunities for improved sustainability.

Subsequent chapters focus on the different possibilities for improved sustainability, offering a step-by-step technical approach to areas including design, properties, renewable plastics, and recycling and re-use. Each of these pillars are supported by data, examples, analysis and best practice guidance. Finally, the latest developments and future possibilities are considered.



فهرست مطالب

Cover
PLASTICS DESIGN LIBRARY (PDL) PDL HANDBOOK SERIES
A PRACTICAL GUIDE TO PLASTICS
SUSTAINABILITY:
CONCEPT, SOLUTIONS, AND IMPLEMENTATION
Copyright
Contents
Preface
	Chapter 1 An Overview of Sustainability and Plastics: A Multifaceted, Relative, and Scalable Concept
	Chapter 2 Plastics Overview: Outline of the Current Situation of Plastics
	Chapter 3 Metrics of Sustainability in Plastics: Indicators, Standards, Software
	Chapter 4 Easy Measures Relating to Improved Plastics Sustainability
	Chapter 5 Eco-Design Rules for Plastics Sustainability
	Chapter 6 Environmental and Engineering Data to Support Eco-Design for Plastics
	Chapter 7 Advanced Environmental and Engineering Properties to Support Eco-Design for Plastics
	Chapter 8 Economics Relating to Fossil and Renewable Plastics
	Chapter 9 Recycling of Plastics, Advantages, and Limitation of Use
	Chapter 10 Transition of Plastics to Renewable Feedstock and Raw Materials
	Chapter 11 Plastics Sustainability: Drivers and Obstacles
	Chapter 12 Plastics Sustainability: Prospective
Disclaimer
Acronyms and Abbreviations
Glossary
1 An Overview of Sustainability and Plastics: A Multifaceted, Relative, and Scalable Concept
	1.1 Sustainability and Circular Economy
		1.1.1 Sustainability is a Tripod Based on Environment, Economic, and Social Features
		1.1.2 Circular Economy
	1.2 Sustainability in the Plastics Field
		1.2.1 Sustainable Design
		1.2.2 Renewable Polymers
		1.2.3 Sustainable Processes or Sustainable Manufacturing
		1.2.4 Sustainable Use Phase
		1.2.5 Waste Management, Repair, Reuse, Recycling
		1.2.6 Economic Involvements
	1.3 People’s Perception of Plastics Sustainability
		1.3.1 Opinions of Plastics Sector Players
		1.3.2 General Public Opinions: Survey Example and Social Network Opinions
			1.3.2.1 Plastics Concern Overview
			1.3.2.2 Plastics Concern Details
				Environment
				Applications
				Technical Features
				Economy
	1.4 Drivers of Change
		1.4.1 Standards and Reporting
		1.4.2 Policies, Directives and Regulations
		1.4.3 Examples of Marketing Strategy Based on Sustainability
		1.4.4 Cautious Forecast of Major Changes in the Global Environment
	1.5 Sustainable Material and Waste Management
		1.5.1 Sustainable Materials Management: A New Approach to Material Selection
		1.5.2 Sustainable Waste Management
			1.5.2.1 Recycling of Production Wastes
			1.5.2.2 Treatment of Postconsumer Products
				Environment Advantages
				Cost Savings
				Regulations and Limitations
	1.6 Sustainability is Vital to Mitigate Environment Damages Caused by Booming Plastics Consumption
		1.6.1 Population Growth
		1.6.2 Standard of Living
		1.6.3 General Consequences of Population and Gross Domestic Product Growths
		1.6.4 Sustainability, the Expected Response to Climate Change
			1.6.4.1 Main Greenhouse Gases Overview
				Water Vapor
				Carbon Dioxide
				Methane
				Halogenated Gases
				Nitrous Oxide (N2O)
				Ozone
				Sulfur Hexafluoride
				Concluding Remarks
				Urgency of Decisions
			1.6.4.2 Climate Warming and Sea Level Rise: The Major Risks
			1.6.4.3 Biological Consequences
		1.6.5 Natural and Artificial Sinks
	1.7 Overview of Specific Plastics Features
		1.7.1 Population and Gross Domestic Product Push the Plastics Demand
		1.7.2 The Extent of the Problem: The Worldwide Plastics Demand at a Glance
		1.7.3 Plastics: A Generic Name for Very Diverse Materials
	1.8 Environmental Issues From a Plastics Point of View
		1.8.1 Potential Pollutants
		1.8.2 Specific Environmental Issues for Plastics: Visual Pollution, Marine Litter, Single-Use Items
			1.8.2.1 Marine Litter
			1.8.2.2 Microplastics, Microbeads, Microfibers
			1.8.2.3 Single-Use Products: What is the Problem?
		1.8.3 High Lifetimes are a Handicap for Waste
	1.9 A Major Issue for Sustainability: Plastics Processing Needs (Polluting) Energy
		1.9.1 Energy Versus Gross Domestic Product
		1.9.2 Overview of Energy Demand Forecast
		1.9.3 Potential Energy Sources for the Future
			1.9.3.1 Fossil Energy
			1.9.3.2 Renewable Energy Resources
				Hydropower
				Wind power turbine
				Solar power
				Geothermal Energy
				Biofuels and Other Biofeedstocks from Biomass
			1.9.3.3 Share Examples of Electricity Sources
	1.10 Water Footprint of the Plastics Industry and Water Stress
		1.10.1 Overview
		1.10.2 Water Consumption for Plastics Production
		1.10.3 Best Available Techniques in the Production of Polymers
		1.10.4 Polymers From Natural Sources: Not So Green From a Water Point of View
	Reference
	Further Reading
2 Plastics Overview
	2.1 Do Not Confuse Thermoplastics, Thermoplastic Elastomers, Thermosets, Composites, and Hybrids
		2.1.1 Thermoplastics
			2.1.1.1 Advantages
			2.1.1.2 Disadvantages
		2.1.2 Thermoplastic Elastomers
		2.1.3 Thermosets
			2.1.3.1 Advantages
			2.1.3.2 Disadvantages
		2.1.4 Polymer Composites
		2.1.5 Hybrid Materials
	2.2 Compound Is Much More than Polymer: Build the Best Balance of Engineering, Cost, and Environmental Requirements Thanks ...
		2.2.1 Plastic Alloying
		2.2.2 Compounding With Additives
			2.2.2.1 Mechanical Property Upgrading and Customization: Toughening, Reinforcement, Plasticization
				Reinforcement
				Reinforcement With Fibers
				Reinforcement and Filling With Mineral Fillers
				Reinforcement With Glass Beads
				Nanofillers
				Impact Modifiers
				Plasticization
			2.2.2.2 Aging Protection: Additives, Films
			2.2.2.3 Sensory Properties
				Scratch-Resistance Improvement
				Odors
			2.2.2.4 Specific Properties: Specific Grades and Additives
				Fire Behavior
				Conductive Polymers
				Antistatic Specialties
				Conductive Carbon Blacks
				Conductive Fibers
				Metal Powders or Flakes
				Additives for Antifriction Polymers
				Polymers With High Thermal Conductivity
				Magnetic Polymers
			2.2.2.5 The Cost Cutters
				Nonblack Fillers
			2.2.2.6 Use of Recycled Plastics
			2.2.2.7 Structural Foams
	2.3 Understand Particular and Surprising Behavior of Plastics
		2.3.1 Elemental Composition Is Essential
		2.3.2 Molecular Weight and Chain Architecture Are Also of High Importance
		2.3.3 Crystalline and Amorphous Thermoplastics, Glass Transition Temperature
			2.3.3.1 Amorphous Polymers
			2.3.3.2 Crystalline and Semicrystalline Polymers
				The Glass Transition Temperature
				Crystallization is Time and Thermal Dependent and Isn’t Homogeneous
		2.3.4 Viscoelasticity, Creep, Relaxation
			2.3.4.1 Time Dependency
			2.3.4.2 Temperature Dependency
		2.3.5 Isotropy, Anisotropy
		2.3.6 Potential Heterogeneity of Properties
			2.3.6.1 Water Uptake Plasticizes Certain Polymers
			2.3.6.2 Molecular and Filler Orientation
			2.3.6.3 Don’t Confuse Local and Bulk Properties: Take Into Account the Statistical Distribution of Properties
		2.3.7 Ambient Humidity Can Plasticize Polymers and Change Their Properties
		2.3.8 Often Properties Evolve Abruptly: Glass Transition, Yield, Knees, Frequency-Dependent Properties
		2.3.9 Dimensional Stability
			2.3.9.1 Shrinkage
			2.3.9.2 Warpage
			2.3.9.3 Release of Organic Additives
		2.3.10 Aging1
		2.3.11 Chemical Resistance by Immersion or Contact
			2.3.11.1 Exposure Without Constraint
			2.3.11.2 Environmental Stress Cracking (ESC)
	2.4 Sensory Properties of Plastics: An Outstanding Advantage for Marketing
		2.4.1 Optical Properties
		2.4.2 Touch
		2.4.3 Scratch-Resistance Improvement
		2.4.4 Acoustic Comfort
		2.4.5 Odors
		2.4.6 Taste
		2.4.7 Fogging
	2.5 Outline of the Technical and Economic Possibilities of Processing
		2.5.1 Molding Solid Thermoplastics
		2.5.2 Extrusion and Connected Processes
		2.5.3 Calendering
		2.5.4 Blow Molding
		2.5.5 Molding Liquid Thermoplastics
		2.5.6 Secondary Processing
		2.5.7 Three-Dimensional Printing and Other Additive Manufacturing Methods
		2.5.8 Brief Economic Comparison of Some Processing Costs
		2.5.9 Repair Possibilities: A Significant Thermoplastic Advantage for Large Parts
	Further Reading
3 Metrics of Sustainability in Plastics: Indicators, Standards, Software
	3.1 Environment Management Systems
	3.2 Life Cycle Accounts: LCI, LCA, LCIA
		3.2.1 Life Cycle Overview
		3.2.2 Life Cycle Inventory
		3.2.3 Life Cycle Assessment
		3.2.4 Life Cycle Impact Assessment
		3.2.5 Incorporation of Eco-Design or Sustainable Design in the Life Cycle Through ISO 14006
		3.2.6 Beware, Life Cycle Costing is Not an Environmental Feature
	3.3 General Purpose and Specific Standards Linked to the Environment
		3.3.1 Overview
		3.3.2 Environmental Management: ISO 14000 Family and a Few Related Standards
		3.3.3 Incorporation of Eco-Design or Sustainable Design in the Life Cycle Through ISO 14006
		3.3.4 Environmental Assessment of Sites and Organizations
		3.3.5 Environmental Labels and Declarations: The ISO 14020 Series of Standards
		3.3.6 Environmental Performance Evaluation: ISO 14030 and ISO 14031
		3.3.7 Detailed Accounts of LCA, LCI, LCIA: The ISO 14040 Series
		3.3.8 Risk Management
		3.3.9 Quality Management Systems: ISO 9000 Family Addresses Various Aspects of Quality Management
		3.3.10 Environmental Product Declaration
	3.4 Environmental Indicators
		3.4.1 Overview
		3.4.2 Energy Consumption
		3.4.3 CO2 and other Greenhouse Gases, Gas Warming Potential
		3.4.4 Water Footprint
		3.4.5 Toxicity, Unwanted Emissions
		3.4.6 Other Common Indicators
			3.4.6.1 Ozone Depletion, Photochemical Oxidation
			3.4.6.2 Photochemical Smog
			3.4.6.3 Acidification
			3.4.6.4 Eutrophication
		3.4.7 Other Diverse Indicators
		3.4.8 Examples of Indicators
	3.5 Synthetic Indices Resulting From Environmental Indicator Integration
		3.5.1 Overview
		3.5.2 Eco-Profiling System—Volvo/Swedish Industry (https://www.iisd.org/pdf/globlgrn.pdf)
		3.5.3 CML-IA by CML
	3.6 Databases and Software Help in Environmental Management, but Can Lead to Some Discrepancy
		3.6.1 Examples of Software Solutions
		3.6.2 Software May Lead to Some Discrepancies
	3.7 Clarification Concerning Some Terms
	Further Reading
4 Easy Measures Relating to Improved Plastics Sustainability
	4.1 Overview of Pace of Change in the Plastics Industry
	4.2 Decrease the Material Impact on the Product Sustainability
		4.2.1 Avoid, Minimize, or Ban Hazardous Materials; Obey Health and Safety Concerns, Regulation Compliance
		4.2.2 Optimize Material Consumption Using Simulation and Modeling Tools
		4.2.3 Avoid Nonrenewable Natural Resource Depletion Using Renewable Materials
		4.2.4 Use Recycled Materials and Waste
		4.2.5 Avoid Renewable Material Competing With Food or Causing Deforestation
		4.2.6 Design to Facilitate Maintenance, Repair, Reuse, Refurbishment
		4.2.7 Use Reliable Materials and Trustworthy Providers
	4.3 Minimize Manufacturing Impact on the Environment
		4.3.1 Invest in Efficient Machines
			4.3.1.1 Injection Machines: A Critical Choice Between Hydraulic, Electric, and Hybrid Models
				Hydraulic Injection Molding Machines
				Electric Injection Molding Machines
				Hybrid Injection Molding Machines
			4.3.1.2 Peripherals and Retrofitting Solutions
		4.3.2 Favor Less Energy-Demanding Compounds
		4.3.3 Digitalization and Software Solutions
			4.3.3.1 Smart or Intelligent Machines
			4.3.3.2 Manufacturing Execution System Software
			4.3.3.3 Enterprise Resource Planning Software
			4.3.3.4 Software Solutions Integrated by Plastics Machinery Providers
				Energy Monitoring
				Troubleshooting
				Intelligent Machines
				Integrated Production
				Interactive Services
			4.3.3.5 Target Zero-Defect Manufacturing
				Example of Mass-Produced Molded Parts
				Example of Zero-Defect Manufacturing of Composite Parts in the Aerospace Industry
		4.3.4 Promote Efficient Real-Time Quality Control
		4.3.5 Preventive and Predictive Maintenance
		4.3.6 Minimize Waste
		4.3.7 Use Renewable Energy
		4.3.8 Integrate Manufacturing Steps Using Direct Mixing, Comolding, Overmolding, In-Line Process, Workcells
			4.3.8.1 Integrated Compounding
			4.3.8.2 Coprocessing: Coinjection and Overmolding
			4.3.8.3 Fluid-Assisted Injection Molding
			4.3.8.4 In-Line Decoration: FIM, IMC, IML, Among Others
			4.3.8.5 Printing and Laser Marking
				Printing
				Laser Marking
			4.3.8.6 New Processes, Function Integration
				Laser Structuring: Integrate Mechanical and Electrical Functions in MIDs by Laser Direct Structuring
				In-Mold Assembly
			4.3.8.7 Example of Alternative Processing Methods: Thermoformed Bottles Compete With Blow-Molded Ones
			4.3.8.8 Workcells: Automation and Complete Production Cells
		4.3.9 Integration of Subparts and Reduction of Raw Material Diversity
		4.3.10 Potentially Hazardous Releases Possibly Emitted by Plastics
		4.3.11 Think Retrofitting of Machinery
	4.4 Reduce Impact of Supply and Distribution Chains
	4.5 Reduce Impacts of the Use Phase
	4.6 Balancing the Product Durability and Actual Sustainable Benefits
	4.7 Optimize the End-of-Life
	4.8 Competence Development, Training, e-Learning
	References
	Further Reading
5 Eco-Design Rules for Plastics Sustainability
	5.1 Examples of Environmental Traps
		5.1.1 Favorable Example of Automotive Industry: Reduction of Production Impact Matches a Net Impact Reduction Due to the Us...
		5.1.2 Counterexample of House Building: Increase of Production Impact Leads to a Final Impact Mitigation due to the Use Phase
		5.1.3 Selection of Energy Production Method can Replace a Pollution Type by Another
	5.2 Specific Plastics Design Issues
	5.3 Overview of Material Sustainability Impact
		5.3.1 General Pathway toward Mitigation of Material Impact
		5.3.2 Examples of Impact of Material Selection on Other Parameters
		5.3.3 Have an Overall View of Sustainability including Late Phases
	5.4 Design to Withstand Mechanical Loading
		5.4.1 Overview
		5.4.2 Temperature Effect
		5.4.3 Loading Type Effect
		5.4.4 Strain Rate or Time Effect
		5.4.5 Impact Behavior
		5.4.6 Hardness
		5.4.7 Dynamic Fatigue
		5.4.8 Dimensional Effects
		5.4.9 Combination with other Parameters
		5.4.10 Lifetime
		5.4.11 Environmental Cost of Reinforcements
			5.4.11.1 Fibers
				All GFs have in common
				Carbon Fibers
				Natural Fibers
			5.4.11.2 Natural Mineral Fillers
			5.4.11.3 Cellulose Nanofibers
			5.4.11.4 Carbon Nanotubes and Graphene
	5.5 Plastics Behavior Above Ambient Temperature
		5.5.1 Average Temperature
		5.5.2 Continuous Use Temperature
		5.5.3 Underwriter Laboratories Temperature Index
		5.5.4 Heat Deflection Temperature
		5.5.5 Vicat Softening Temperature
		5.5.6 Accelerated Aging
		5.5.7 Environmental Cost of Stabilizers and Antioxidants
	5.6 Low Temperature Behavior
		5.6.1 Low-temperature Tests
		5.6.2 Brittle Point
		5.6.3 Rigidity in Torsion: “Clash-Berg” and “Gehman” tests
		5.6.4 Crystallization Test
		5.6.5 Environmental Footprint of Plasticizers
	5.7 Design for Dimensional Stability
		5.7.1 Thermal Expansion or Retraction
		5.7.2 Shrinkage
		5.7.3 Warpage
		5.7.4 Water or Chemicals Uptake
		5.7.5 Aging, Desorption, Bleeding, Releasing of Organic Components
	5.8 Electrical Properties
		5.8.1 Volume Resistivity: ASTM D257 and IEC 93
		5.8.2 Surface Resistivity: ASTM D257 and IEC 93
		5.8.3 Dielectric Strength
		5.8.4 Arc Resistance
		5.8.5 High Voltage Arc Tracking Rate
		5.8.6 Frequency, Temperature, Moisture, Physical, and Dynamic Aging Effects
		5.8.7 Conductive Polymers: Sustainability Considerations
	5.9 Fire Behavior: Some Ins and Outs
		5.9.1 UL 94 Fire Ratings
		5.9.2 Oxygen Index
		5.9.3 Smoke Opacity, Toxicity, and Corrosivity
		5.9.4 Cone Calorimeter
		5.9.5 Ignition Temperature
		5.9.6 Rate of Burning
		5.9.7 Glow Wire Test
		5.9.8 Fire Resistant Polymers: Sustainability Considerations
			5.9.8.1 Inherently FR Polymers
			5.9.8.2 FR Additive Solutions
			5.9.8.3 The Top Solutions: Halogenated Flame Retardant and Fire, Smoke, and Toxicity Grades
		5.9.9 General Collateral Effects from a Sustainability Standpoint
		5.9.10 A Glimpse on General Behavior of Biopolymers
	5.10 Sensory Issues: Optical Properties, Aesthetics, Odor, Taste, Touch
		5.10.1 Complementarity of Instrumental Measurements and Sensory Panel Evaluations
		5.10.2 Visual Aspect
		5.10.3 Physical Aspect
		5.10.4 Touch
		5.10.5 Odor and Taste Properties and Transfer
		5.10.6 Noise, Vibration, Harshness
		5.10.7 General Collateral Effects of Colorants from a Sustainability Standpoint
			5.10.7.1 Colorants and Pigments
			5.10.7.2 Titanium Oxide
	5.11 Design for Aging, Weathering, and Light and UV Behaviors
		5.11.1 Overview of Light and Ultra Violet Resistance
		5.11.2 Elements of Weathering Appraisal
			5.11.2.1 Effect of Color
			5.11.2.2 Effect of Anti-UV Additives
		5.11.3 Examples of Published Assessments Relating to Light and UV Behavior of Compounds
			5.11.3.1 Polyolefins and Derivatives
			5.11.3.2 PVC and Other Chlorinated Thermoplastics
			5.11.3.3 Styrenics
			5.11.3.4 Polyamides
			5.11.3.5 Thermoplastic Polyesters
			5.11.3.6 Polymethylmethacrylate
			5.11.3.7 Polycarbonate
			5.11.3.8 Polyacetal
			5.11.3.9 Polyphenylene Ether
			5.11.3.10 Fluorinated Thermoplastics
			5.11.3.11 Cellulosics
			5.11.3.12 Polysulfone
			5.11.3.13 Polyphenylene Sulfide
			5.11.3.14 Polyetherimide
			5.11.3.15 Liquid crystal polymer
			5.11.3.16 Polybenzimidazole
			5.11.3.17 Alloys
			5.11.3.18 TPE and Thermoplastic vulcanizate
	5.12 Lifetime and End-of-life Criteria
		5.12.1 Overview
		5.12.2 Accelerated Aging and Modeling
		5.12.3 Smart Design and Mitigation of Aggressiveness of Surroundings are Benefiting from a Sustainability Standpoint
	5.13 Regulation, Health, and Safety Requirements
	Further Reading
6 Environmental and Engineering Data to Support Eco-Design for Plastics
	6.1 Overview
	6.2 Be Cautious of Some Traps Concerning Standards
		6.2.1 General Boundaries of Standards
		6.2.2 Real Cases Are Not Ideal Standardized Cases: Take Into Account the Statistical Distribution of Properties
			6.2.2.1 Failure Onset: Weak Points and Average Properties
			6.2.2.2 Do Not Confuse Local and Bulk Properties: Take into Account the Statistical Distribution of Properties
			6.2.2.3 Means are False Friends
			6.2.2.4 Standard Deviation Depends on Multiple Factors
		6.2.3 Be Cautious of the Real Sense of Common Terms
	6.3 Environmental Indicators
		6.3.1 Use of Renewable Materials Instead of Fossil Resources
		6.3.2 Energy Requirements
		6.3.3 Net Carbon Footprint, CO2 and Other Greenhouse Gases, Global Warming Potential
		6.3.4 Water Footprint
		6.3.5 Examples of Other Environmental Indicators
		6.3.6 Variability and Weakness of Environmental Indicators
		6.3.7 Do Not Confuse Indicator per Weight and Indicator per Functional Unit
	6.4 Usual Indicators for Plastics Design
		6.4.1 Thermal Behavior
			6.4.1.1 Overview
			6.4.1.2 Glass Transition Temperature
			6.4.1.3 Thermal Behavior above Room Temperature: HDT, CUT, UL Temperature
				Heat Deflection Temperature or Deflection Temperature Under Load
				General Assessments Concerning Continuous Use Temperature
				Examples of UL Relative Temperature Index
				Examples of Impact Strength Above Room Temperature
					Examples of Vicat Softening Temperature
			6.4.1.4 Low-Temperature Behavior
				Expected Minimum Service Temperatures
				Low-Temperature Tests
					Standardized Impact Tests Processed at Low Temperatures
				Brittle Point
				Dynamic Torsion Modulus
				Crystallization Test
		6.4.2 Density
		6.4.3 Mechanical Properties
			6.4.3.1 Hardness
			6.4.3.2 Stress and Strain Under Unidirectional Loading: Tensile, Flexural, and Compression Properties
			6.4.3.3 Pay Attention to “Compression Modulus” That Can Hide “Bulk Modulus”
		6.4.4 Examples of Water Uptake
		6.4.5 Examples of Mold Shrinkage
	Further Reading
7 Advanced Environmental and Engineering Properties to Support Eco-Design for Plastics
	7.1 Advanced Properties That can Help Eco-Design
		7.1.1 Fuel Energy and Feedstock Energy
		7.1.2 Gas Warming Potential
		7.1.3 Rapid Overview of Examples of Advanced Indicators
			7.1.3.1 Examples of Ozone Depletion Potential
			7.1.3.2 Photo-Oxidant Creation Potential
			7.1.3.3 Acidification Potential
			7.1.3.4 Eutrophication Potential
			7.1.3.5 Dust/Particulate Matter (≤10μm3)
			7.1.3.6 Ecotoxicity Potential
		7.1.4 Natural-Sourced Versus Fossil Polymers: A Mixed Bag of Benefits and Drawbacks
	7.2 Advanced Engineering Properties
		7.2.1 Thermal Dependency of Mechanical Properties
			7.2.1.1 Short-Term Effects of High and Low Temperatures
				Behavior Above Room Temperature
				Behavior Below Room Temperature
			7.2.1.2 Long-term Heat Effect on Oxidizing Aging
		7.2.2 Time Dependent Mechanical Properties
			7.2.2.1 Creep
			7.2.2.2 Relaxation
			7.2.2.3 Fatigue
	7.3 Poisson’s Ratios
	7.4 Electrical Properties
		7.4.1 Resistivity Examples
		7.4.2 Dielectric Strength Examples
		7.4.3 Examples of Dielectric Loss Factors
	7.5 Flammability: Limiting Oxygen Index examples
	7.6 Optical Properties: Examples of Transparent or Translucent Plastics
	7.7 Gas Permeability
	7.8 Tribological Properties
		7.8.1 Coefficient of Friction
		7.8.2 Limiting Pressure Velocity
	References
	Further Reading
8 Economics Relating to Fossil and Renewable Plastics
	8.1 Raw Plastics Material Cost: Beware of Unusual “Raw” Materials and Waste Levels
		8.1.1 Usual Physical Types of Plastics Raw Materials
		8.1.2 Cost of Sophisticated Raw Materials
		8.1.3 Examples of Additive Costs
		8.1.4 Examples of Reinforcement Costs
		8.1.5 Beware of the Actual Consumption of Plastic Compared to the Weight of the Part
	8.2 Processing Costs
		8.2.1 Capability Proposals for Some Processing Methods
			8.2.1.1 Proposals for Thermoplastics
			8.2.1.2 Proposals for Composites
		8.2.2 Use of Cost Estimator Software
			8.2.2.1 Examples of Cost Estimator Software
			8.2.2.2 Examples of Cost Estimator Results
				Agreement Between Different Cost Estimators
				Example of Effect of Run Size
				Check the Sensitivity and the Application Window of Variables of Interest
	8.3 Examples of Costs
		8.3.1 Expected Costs by Market
		8.3.2 Expected Cost of Composites
	8.4 Economics of Renewable Materials
		8.4.1 Plastics Recycling
		8.4.2 Biosourced Plastics Consumption
		8.4.3 Market Shares by Bioplastic Family
		8.4.4 Production Capacities by Bioplastic Family
		8.4.5 Bioplastic Capacities by Region
		8.4.6 Bioplastic Capacities by Market
		8.4.7 Bioadditives Consumption
			8.4.7.1 Natural Fiber Composite Market
			8.4.7.2 Other Bioadditives
		8.4.8 Wood Plastic Composite and Natural Fiber Composite Markets
		8.4.9 Biomaterial Costs
			8.4.9.1 Bioplastics Costs
			8.4.9.2 Natural Fiber Costs
	8.5 Survey of Main Bioplastics Markets
		8.5.1 Packaging
		8.5.2 Consumer Goods
		8.5.3 Automotive and Transportation
		8.5.4 Building and Construction
		8.5.5 Agriculture
		8.5.6 Other Markets
	Further Reading
	Papers and Books
9 Recycling Plastics: Advantages and Limitations of Use
	9.1 Recycling Outline
		9.1.1 Environmental Benefits of Recycling
		9.1.2 Economics of Recycling
			9.1.2.1 Market Overview by Region
				Overview of Plastic Wastes in United States
				Overview of Plastic Wastes in Europe
			9.1.2.2 Recovery Costs: A Severe Obstacle to a Self-Growth
				Incentive Effect of High Crude Oil Price
		9.1.3 Reliability of Recycling
		9.1.4 Example of Recycling Loop Effects on Performances
		9.1.5 Recycling: Legislation, Standards, and Related Publications
			9.1.5.1 EU Waste Legislation Examples
			9.1.5.2 Automotive
				Schedule
			9.1.5.3 Packaging
			9.1.5.4 Electrical and Electronic Equipment
	9.2 Recycling Methods
		9.2.1 Reprocessing of Processing Scraps and Mechanical Recycling
			9.2.1.1 Overview
			9.2.1.2 Effect of Pollutants
		9.2.2 Recycled Material Upgrading by Additives
			9.2.2.1 Overview
			9.2.2.2 Compatibilizers
			9.2.2.3 Impact Modifiers
			9.2.2.4 Plasticization
			9.2.2.5 Additives for Aging Protection
			9.2.2.6 Sensorial Property Enhancers
			9.2.2.7 Special Additives and Packages for Recyclate Upgrading
			9.2.2.8 The Purity Enhancement
		9.2.3 Chemical Recycling
			9.2.3.1 Thermoplastic Polyesters
			9.2.3.2 Polyurethanes
		9.2.4 Solvent Recycling
			9.2.4.1 Pretreatment
			9.2.4.2 Selective Dissolution
			9.2.4.3 Separation
		9.2.5 Thermal Recycling
		9.2.6 Energy Recovery
		9.2.7 Anaerobic Biodegradation of Biodegradable Plastics With Gas Recovery
		9.2.8 Enzymatic Depolymerization of Polylactic Acid
		9.2.9 The REnescience Process Recovering Plastics and Metals From Municipal Solid Waste Without Sorting
	9.3 Sectorial Routes for Recycling
		9.3.1 Used Polyethylene Terephthalate Bottles: Realities of Everyday Life
			9.3.1.1 Collection of Bottles
			9.3.1.2 Sorting of Plastic Bottles
			9.3.1.3 Bottle Recycling
			9.3.1.4 Bottle-to-Bottle Recycling
			9.3.1.5 Bottle to Engineering Thermoplastic Polyester Grades
		9.3.2 High-Density Polyethylene Bottles
		9.3.3 Electricity and Electronics: Closed- and Open-Loop Recycling
		9.3.4 Auto: Closed- and Open-Loop Recycling
		9.3.5 Recycling and Reprocessing of Building Products
		9.3.6 Recycling of Thermosets
		9.3.7 Recycling of Composites
		9.3.8 Recycling of Glass and Carbon Fibers, and High-Performance Polymers
	9.4 Recycling Advantages: CO2 Emission, Greenhouse Effect, and Carbon Footprint
		9.4.1 Some Real Facts and Figures
		9.4.2 Statistical Analyses of Some Real Examples
	9.5 Recyclate Property Examples
		9.5.1 Polyamides Examples
			9.5.1.1 Industrially Recycled Polyamides
		9.5.2 Polystyrene and Acrylonitrile Butadiene Styrene Examples
		9.5.3 Polypropylene Examples
		9.5.4 Examples of Polycarbonate, PC/ABS, and PC/PBT Alloys
		9.5.5 Examples of Polyetherimide
	9.6 Recycled Materials Often Also Bring Cost Saving in Addition to Pollution Savings
	9.7 Some Limitations to Recycled Material Use
		9.7.1 Underwriters Laboratories’s Recommendations on the Use of Regrind
		9.7.2 Producer Recommendations
	References
	Further Reading
		Websites
10 Transition of Plastics to Renewable Feedstock and Raw Materials: Bioplastics and Additives Derived From Natural Resources
	10.1 Brief Inventory of Renewable Polymers
	10.2 Renewable Additives
		10.2.1 Renewable Plasticizers
		10.2.2 Natural Reinforcements
			10.2.2.1 Natural Fibers
			10.2.2.2 Balsa
			10.2.2.3 Other Organic Natural Fillers
			10.2.2.4 Other Inorganic Renewable Natural Fillers
		10.2.3 Processing Aids
		10.2.4 Surface Friction Modifiers: Lubricant, Slipping, and Antiblocking Agents
		10.2.5 Release Agents
		10.2.6 Antistatic Additives
		10.2.7 Optical Property Modifiers: Antifogging, Color, Gloss Modifiers
			10.2.7.1 Renewable Colorants
		10.2.8 Renewable Impact Modifiers and Tougheners
		10.2.9 Protective Agents, Stabilizers, Thermal, and Antiaging Additives, Light Stabilizers
		10.2.10 Miscellaneous Additives: Fire Retardants, Tackifiers, Nucleating Agent, Waxes, Hardeners, Foaming Agents, etc
		10.2.11 Renewable Masterbatches Based on Renewable Matrix or Renewable Additive
	10.3 Ready-to-Use Thermoplastic Blends Derived From Starch, a Natural Polymer
		10.3.1 Overview
		10.3.2 Processing
		10.3.3 Environmental Features
		10.3.4 Application Sectors
		10.3.5 Examples of Producers and Trademarks
		10.3.6 Property Tables
	10.4 Polylactic Acid Polymerized From a Natural Monomer
		10.4.1 Overview
		10.4.2 Processing
		10.4.3 Environmental Features
		10.4.4 Application Sectors
		10.4.5 Examples of Producers and Trademarks
		10.4.6 Property Tables
			10.4.6.1 Melt Strength Enhancement
			10.4.6.2 Heat Stabilization
	10.5 Natural Linear Polyesters Produced by Bacterial Fermentation—Polyhydroxyalkanoates
		10.5.1 Overview
		10.5.2 Processing
		10.5.3 Environmental Features
		10.5.4 Application Sectors
		10.5.5 Examples of Producers and Trademarks
		10.5.6 Property Tables
	10.6 Cellulose Derivatives Based on Natural Cellulose
		10.6.1 Overview
			10.6.1.1 Advantages
			10.6.1.2 Drawbacks
		10.6.2 Processing
		10.6.3 Environmental Features
		10.6.4 Application Sectors
		10.6.5 Examples of Producers and Trademarks
		10.6.6 Property Tables
	10.7 Biopolyethylene and Biosourced Ethylene Vinyl Acetate
		10.7.1 Overview
			10.7.1.1 Reminder of Advantages of Traditional Polyethylene
			10.7.1.2 Reminder of Drawbacks of Traditional Polyethylene
		10.7.2 Processing
		10.7.3 Polyethylene Environmental Features
		10.7.4 Polyethylene Application Sectors
		10.7.5 Examples of Producers and Trademarks
		10.7.6 Polyethylene Property Tables
		10.7.7 Biobased Ethylene Vinyl Acetate Copolymer
	10.8 Renewable PET, PBT, PEF, PTT Alternatives to Fossil Thermoplastic Polyesters PET and PBT
		10.8.1 Replacement of the Fossil Alcohol by Natural Alcohol
			First Step: Plant-Based Mono Ethylene Glycol
		10.8.2 Second Step: Paraxylene for 100% Biopolyester
		10.8.3 The Third Way: Polyethylene-Furanoate
		10.8.4 Recycled Polyethylene Terephthalate
		10.8.5 PolyTrimethyleneTerephthalate
		10.8.6 Partially Renewable Thermoplastic Elastomer Ester
		10.8.7 Polybutylene Succinate
		10.8.8 Property Examples of PET, PBT, PTT, TPEE, PBS
	10.9 Renewable Polyamides
		10.9.1 Polyamides With Long Hydrocarbon Segments: PA11, 1010, 1012
		10.9.2 Polyamides Alternating Long and Short Hydrocarbon Segments: PA610, 510, 512, 514, 410
		10.9.3 Polyamides With Short Hydrocarbon Segments: PA56
		10.9.4 Amorphous Transparent Renewable Polyamides
		10.9.5 Polyphthalamide
		10.9.6 Renewable Polyether Block Amides
			10.9.6.1 Property Tables
	10.10 Renewable Polyurethanes
		10.10.1 Natural and Renewable Oil Polyols
		10.10.2 CO2-Containing Polyols
		10.10.3 Bioisocyanate Crosslinker for Polyurethanes
		10.10.4 Applications
			10.10.4.1 Biopolyurethane Foams
			10.10.4.2 Biopolyurethane Sprays
			10.10.4.3 Coatings and Adhesives
			10.10.4.4 Biothermoplastic Polyurethane
		10.10.5 Examples of Environmental Advantages
		10.10.6 Examples of Polyurethane Players
	10.11 Renewable Unsaturated Polyesters
		10.11.1 Overview
		10.11.2 Applications
		10.11.3 General Properties
			10.11.3.1 General Advantages
			10.11.3.2 General Drawbacks
			10.11.3.3 Special Grades
	10.12 Renewable Epoxy Resins
		10.12.1 Natural-Sourced Epoxidized Oils and Epichlorhydrin
		10.12.2 General Properties of Epoxy Resins
			10.12.2.1 General Advantages
			10.12.2.2 General Drawbacks
			10.12.2.3 Special Grades
			10.12.2.4 Applications
	10.13 Biosourced Polycarbonates
	10.14 Derivatives of Lignin: For Instance the Liquid Wood (Arboform by Tecnaro)
	10.15 Example of Self-Reinforced Composite Produced From Cereals
	10.16 Renewable Acrylics—Poly(Methyl Methacrylate)
		10.16.1 General Advantages
		10.16.2 General Drawbacks
	10.17 Renewable Phenol Formaldehyde Resins
		10.17.1 General Advantages
		10.17.2 General Drawbacks
	10.18 Renewable Polypropylene
	10.19 Renewable Polyvinyl Chloride
		10.19.1 General Advantages
		10.19.2 General Drawbacks
	10.20 Thermosetting Cyanate Ester Resins
	10.21 Thermosetting Furanic Resins
	10.22 An Endless List of Alloys
		10.22.1 Alloys of Renewable Polymers
		10.22.2 Hybrid Alloys of Renewable and Fossil Polymers
		10.22.3 Others
			10.22.3.1 Examples of Algae and Fossil Polymer Compounds
			10.22.3.2 Various Bioplastics Derived From Renewable Raw Materials
	References
	Further Reading
11 Plastics Sustainability: Drivers and Obstacles
	11.1 The Vast Range of Waste Strategies: From Waste Minimization to Landfilling
	11.2 Waste Minimization
	11.3 Repair and Reuse
		11.3.1 Overview
		11.3.2 High-Tech Repairs: Example of Aircraft Structural Repair
		11.3.3 Benefits of Reused Drums
		11.3.4 Refillable Bottles: May Be a Counterexample
		11.3.5 Refurbishing and Upgrading Machinery: Benefits of Industry 4.0
			11.3.5.1 Overview
			11.3.5.2 Industry 4.0: A Modern Way to Inspire an Efficient Retrofitting
	11.4 Recycling and Actual Reuse
		11.4.1 Environmental Benefits of Recycling
		11.4.2 Closed-Loop Recycling Overview
		11.4.3 Recycling of High-Performance Materials: Example of Carbon Fiber
		11.4.4 Global Warming Potential of Specific Recycled Polymers
		11.4.5 Global Warming Potential of End Products Incorporating Recycled Polymers
		11.4.6 Examples of Fossil Energy Gains Due to the Use of Recycled Resins
		11.4.7 Fossil Energy Demand of End Products Based on Reused Materials and/or Recycled Polymers
		11.4.8 Example of Inconsistency Between Indicators Relating to a Recycled Polymer Family
		11.4.9 Examples of Cost Savings Due to Recycling
		11.4.10 Example of Environmental Benefits of Recycling a Commodity Plastic: rPVC
		11.4.11 Recycling, Reuse, or Use Virgin Polymer: The Right Answer Depends on the Actual Context
	11.5 Policy, Legislation, Fees, Taxes, Bans, Deposit and Bill Strategies, and the Green Wave Are Real Game-changers
		11.5.1 Incentive Legislation Example: Extended Producer Responsibility
		11.5.2 Example of Regulation Restraining the Use of Plastics: Carrier Bags
		11.5.3 Example of Regulation Boosting Recycling: End-of-Life Vehicles
		11.5.4 Example of Recycled Plastics Limitations
		11.5.5 Example of “Deposit and Bill” Approach: Beverage Bottles
	11.6 Renewable Materials: Alternative to Oil Becoming Scarcer and Use of Natural-Sourced Materials
		11.6.1 Success Story Examples
		11.6.2 A Questionable Case
		11.6.3 A Textbook Case: Replacement of ABS for Lego Bricks
			11.6.3.1 Drop-in Solutions for Green ABS
			11.6.3.2 Substitute Biobased Polymers for ABS
	11.7 Ecological Features Boosting the Growth of Plastics
		11.7.1 Functionality Integration Due to Design Freedom
		11.7.2 Lightweighting: Energy and Resource Savings, Pollution Mitigation
			11.7.2.1 Overview of General Plastics Solutions
			11.7.2.2 Environment-Friendly Structural Solutions
			11.7.2.3 The Main Potential Boosters and Brakes for Natural Fiber–Reinforced Composites
			11.7.2.4 Fully Renewable Solutions: Natural Fibers and Biosourced Polymers
			11.7.2.5 Hybrid Solutions Combine Renewable and Fossil Components
			11.7.2.6 Sustainable Solutions Based on “Unsustainable” Composites
			11.7.2.7 Automotive: A Promising Domain for Traditional Fossil Plastics
			11.7.2.8 Composites Save Weight and Mitigate Pollution
				Organosandwich
				Traditional Composites
			11.7.2.9 Mobility Solution Examples
				Aircraft
				Road Transportation
				Marine
				Railway
		11.7.3 Take Advantage of the Unique Insulation Efficiency of Plastics Foams: “Zero Energy” Housing Examples and Others
	11.8 Examples of Bottlenecks for the Growth of Plastics
		11.8.1 Fire Behavior
		11.8.2 Nanomaterials
		11.8.3 3D Printing and Other Additive Manufacturing Techniques
	11.9 Where We Stand Today: Global, Regional, Sectorial Inequalities
		11.9.1 Global Landscape
		11.9.2 Plastics Waste Treatment: Promising Results of Advanced Countries
		11.9.3 Brief Jumble of Facts and Figures
	References
	Further Reading
12 Plastics Sustainability: Prospective
	12.1 Demand and Growth Potential of Plastics
		12.1.1 Overview of the Future Global Plastics Industry
		12.1.2 Effects of Demography and Standard of Living
		12.1.3 Rethinking Time Management
		12.1.4 Authoritarian Restrictions, Bans, and Incentive Actions
		12.1.5 Emerging Technologies: Example of Vehicles
			12.1.5.1 Electric Vehicles
			12.1.5.2 Autonomous Vehicles
		12.1.6 The Dream of Almost Perfect Polymers
		12.1.7 Alternative Fuels
		12.1.8 Plastics Brand Image
		12.1.9 Specificities Linked to Sustainable Plastics
	12.2 Economics of Renewable Plastics and Bio-additives: Quantified Expectations
		12.2.1 Renewable Plastics Consumption and Capacity Forecasts
			12.2.1.1 Renewable Plastics Consumption Overview at Mid- and Long-Term
				Recovery Volume
				Bio-sourced Plastics Consumption
			12.2.1.2 Market Shares by Bioplastic Family
			12.2.1.3 Production Capacities by Bioplastic Family
			12.2.1.4 Bioplastic Capacities by Region
			12.2.1.5 Bioplastic Capacities by Market
			12.2.1.6 Composites Consumption
		12.2.2 Bio-additives Consumption
		12.2.3 Bio-material Costs
			12.2.3.1 Crude Oil: Shortage or Not?
			12.2.3.2 Bioplastics Costs
			12.2.3.3 Long-term Costs of Bioplastics Compared to Fossil Plastics
				Modeling From Historical Prices
				Crude Oil Price Expectations
				Modeling Plastics Prices Thanks to Crude Oil Prices
	12.3 Sustainability: The Problem Is at a System Level
		12.3.1 Sustainability Game Changers: Smart Factories, Circularity, and Environmental Compliance
		12.3.2 Emergence and Rapid Advance of Prescriptive Techniques
		12.3.3 Examples of Strategies Aiming at a Better Sustainability
	12.4 Wastes: Collection and Financing Schemes
		12.4.1 Collection Systems: Separate or Commingled Waste
		12.4.2 “Polluter Pays” Principle
		12.4.3 Polymers Incompatible With Existing Recycling Streams
	12.5 Recycling Management
		12.5.1 Examples of Direct Involvement of Plastics Producers
		12.5.2 Example of Associations of Plastics Industry
		12.5.3 Example of Difficult-to-Recycle Hi-Tech Carbon Fiber Reinforced Plastic Composite for Aeronautics
		12.5.4 Example of Industrial-Scale PS Recycling Channel
		12.5.5 Better Reliability and Availability of Recycled Plastic Are Unavoidable Issues
	12.6 Waste Sorting
	12.7 Suppress the Pitfall of Waste Sorting: Process Plastics Waste Without Sophisticated Sorting
		12.7.1 Depolymerization by Enzymes
		12.7.2 Depolymerization by Microwaves
		12.7.3 Other Methods
	12.8 Municipal Solid Waste: A Mine of Plastics (and Other Materials) or an Environmental Calamity?
	12.9 Ocean Litter: Calamity or Untapped Feedstock?
	12.10 Examples of Sustainable Renewable Sources Used or Proposed by Resin Producers
	12.11 Supramolecular, Vitrimers, and Other Self-Healing Polymers
	12.12 Conclusion
	Reference
Index
Back Cover




نظرات کاربران