دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: نظریه نمودار ویرایش: نویسندگان: Gary Chartrand. Ping Zhang سری: Dover Books on Mathematics ISBN (شابک) : 0486483681, 9780486483689 ناشر: Dover Publications سال نشر: 2012 تعداد صفحات: 0 زبان: English فرمت فایل : EPUB (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 16 مگابایت
کلمات کلیدی مربوط به کتاب اولین دوره در تئوری نمودار: ریاضیات، ریاضیات گسسته، نظریه گراف
در صورت تبدیل فایل کتاب A First Course in Graph Theory به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب اولین دوره در تئوری نمودار نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این متن جامع که توسط دو تن از برجستهترین چهرهها در زمینه نظریه گراف نوشته شده است، رویکردی قابلتوجه دانشجوپسند ارائه میکند. برای دانشآموزانی که اولین دوره تئوری گراف را میگذرانند، درمان سالم و در عین حال قابل دسترس آن بر تاریخچه نظریه گراف تأکید میکند و نمونههای منحصربهفرد و شواهد روشنی را ارائه میدهد. نسخه 2004.
Written by two of the most prominent figures in the field of graph theory, this comprehensive text provides a remarkably student-friendly approach. Geared toward undergraduates taking a first course in graph theory, its sound yet accessible treatment emphasizes the history of graph theory and offers unique examples and lucid proofs. 2004 edition.
Content: Cover Page
Title Page
Copyright Page
Dedication
Contents
Preface
1. Introduction
1.1. Graphs and Graph Models
1.2. Connected Graphs
1.3. Common Classes of Graphs
1.4. Multigraphs and Digraphs
2. Degrees
2.1. The Degree of a Vertex
2.2. Regular Graphs
2.3. Degree Sequences
2.4. Excursion: Graphs and Matrices
2.5. Exploration: Irregular Graphs
3. Isomorphic Graphs
3.1. The Definition of Isomorphism
3.2. Isomorphism as a Relation
3.3. Excursion: Graphs and Groups
3.4. Excursion: Reconstruction and Solvability
4. Trees
4.1. Bridges
4.2. Trees. 4.3. The Minimum Spanning Tree Problem4.4. Excursion: The Number of Spanning Trees
5. Connectivity
5.1. Cut-Vertices
5.2. Blocks
5.3. Connectivity
5.4. Menger\'s Theorem
5.5. Exploration: Powers and Edge Labelings
6. Traversability
6.1. Eulerian Graphs
6.2. Hamiltonian Graphs
6.3. Exploration: Hamiltonian Walks
6.4. Excursion: Early Books of Graph Theory
7. Digraphs
7.1. Strong Digraphs
7.2. Tournaments
7.3. Excursion: Decision-Making
7.4. Exploration: Wine Bottle Problems
8. Matchings and Factorization
8.1. Matchings
8.2. Factorization. 8.3. Decompositions and Graceful Labelings8.4. Excursion: Instant Insanity
8.5. Excursion: The Petersen Graph
8.6. Exploration: Bi-Graceful Graphs
9. Planarity
9.1. Planar Graphs
9.2. Embedding Graphs on Surfaces
9.3. Excursion: Graph Minors
9.4. Exploration: Embedding Graphs in Graphs
10. Coloring Graphs
10.1. The Four Color Problem
10.2. Vertex Coloring
10.3. Edge Coloring
10.4. Excursion: The Heawood Map Coloring Theorem
10.5. Exploration: Modular Coloring
11. Ramsey Numbers
11.1. The Ramsey Number of Graphs
11.2. Turan\'s Theorem
11.3. Exploration: Modified Ramsey Numbers. 11.4. Excursion: Erdős Numbers12. Distance
12.1. The Center of a Graph
12.2. Distant Vertices
12.3. Excursion: Locating Numbers
12.4. Excursion: Detour and Directed Distance
12.5. Exploration: Channel Assignment
12.6. Exploration: Distance Between Graphs
13. Domination
13.1. The Domination Number of a Graph
13.2. Exploration: Stratification
13.3. Exploration: Lights Out
13.4. Excursion: And Still It Grows More Colorful
Appendix 1. Sets and Logic
Appendix 2. Equivalence Relations and Functions
Appendix 3. Methods of Proof
Solutions and Hints for Odd-Numbered Exercises.