ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب 長岡亮介 線型代数入門講義: 現代数学の“技法”と“心”

دانلود کتاب سخنرانی مقدماتی ریوسوکه ناگائوکا در مورد جبر خطی: "تکنیک ها" و "قلب" ریاضیات مدرن

長岡亮介 線型代数入門講義: 現代数学の“技法”と“心”

مشخصات کتاب

長岡亮介 線型代数入門講義: 現代数学の“技法”と“心”

ویرایش:  
نویسندگان:   
سری:  
ISBN (شابک) : 4489020821, 9784489020827 
ناشر: 東京図書 
سال نشر: 2010 
تعداد صفحات: 421 
زبان: Japanese 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 17 مگابایت 

قیمت کتاب (تومان) : 46,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 3


در صورت تبدیل فایل کتاب 長岡亮介 線型代数入門講義: 現代数学の“技法”と“心” به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب سخنرانی مقدماتی ریوسوکه ناگائوکا در مورد جبر خطی: "تکنیک ها" و "قلب" ریاضیات مدرن نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی درمورد کتاب به خارجی



فهرست مطالب

まえがき
目次
第1章 ベクトルの基本概念
	§1.1 R^2
	§1.2 ベクトルのもつ代数構造
	§1.3 ベクトルの幾何学的応用
	§1.4 R^3
	§1.5 R^3 での共面条件
	§1.6 R^3 から R^n へ
	§1.7 R^n の正規直交基底
	【1章の復習問題】
	A
第2章 行列の基本概念
	§2.1 R^m の基底
	§2.2 連立1次方程式と行列の起源
	§2.3 行列の基礎概念
	§2.4 行列の演算(加法, スカラー倍, 転置)
	§2.5 ブロック分割
	§2.6 行列の立場から見た加減法のプロセス―掃き出し法
	【2章の復習問題】
	A
第3章 逆行列の概念,正則行列の概念
	§3.1 行列の積の定義
	§3.2 行列の積の性質
	§3.3 行列の積についての際立った性質—非可換性
	§3.4 単位行列
	§3.5 逆行列,正則性
	【3章の復習問題】
	A
第4章 連立1次方程式
	§4.1 変形とその表現
	§4.2 行列の基本変形の数学的な表現—基本行列
	§4.3 行基本変形と基本行列
	§4.4 列基本変形と基本行列
	§4.5 行列の基本変形と連立方程式の解法
	【4章の復習問題】
	A
第5章 階数 (rank) の概念
	§5.1 階数 (rank) の概念
	§5.2 階数の概念から見た連立1次方程式
	【5章の復習問題】
	A
第6章 行列式に向けて
	§6.1 置換とは
	§6.2 置換の積
	§6.3 置換の表現
	§6.4 置換全体の構造―n次対称群
	§6.5 置換の分類
	【6章の復習問題】
	A
第7章 行列式の概念とその計算
	§7.1 行列式の起源
	§7.2 置換の符号と行列式の定義
	§7.3 特別な行列の行列式
	§7.4 行列式の基本性質(1)―転置不変性
	§7.5 行列式の基本性質(2)―交代性
	§7.6 行列式の基本性質(3)―多重線型性
	【7章の復習問題】
	A
第8章 余因子行列の概念
	§8.1 行列式の implicit な定義と行列式の幾何学的意味
	§8.2 その他の行列式の重要な性質
	§8.3 行列式の展開と余因子
	§8.4 行列と行列式
	§8.5 連立1次方程式と行列式
	【8章の復習問題】
	A
第9章 線形空間の基本概念
	§9.1 線型空間の定義
	§9.2 部分空間
	§9.3 線型独立性, 線型従属性
	§9.4 生成する空間
	§9.5 基底と次元
	【9章の復習問題】
	A
第10章 線形空間の発展的概念
	§10.1 計量線形空間
	§10.2 正規直交基底
	【10章の復習問題】
	A
第11章 線形写像,線形変換の諸概念
	§11.1 線型写像の概念
	§11.2 線型写像の例
	§11.3 線型写像の性質, 部分空間
	§11.4 同型写像
	§11.5 像,核の次元
	§11.6 数ベクトル空間上の線型写像
	§11.7 線型空間の基底とベクトルの成分表示
	§11.8 線型写像の表現
	§11.9 線型写像の重要な具体例
	§11.10 双対空間
	【11章の復習問題】
	A
第12章 線形写像の表現の単純化―基底の取り替え
	§12.1 基底の取り替え行列
	§12.2 基底の取り替えによる行列の変化
	§12.3 実用的な場合の考察
	【12章の復習問題】
	A
第13章 不変部分空間から固有ベクトルへ
	§13.1 部分空間の和
	§13.2 直和分解
	§13.3 不変部分空間
	§13.4 不変部分空間への直和分解
	§13.5 1次元不変部分空間
	【13章の復習問題】
	A
第14章 固有値,固有ベクトルと行列の対角化
	§14.1 固有値,固有ベクトル,固有空間の概念
	§14.2 固有ベクトルによる対角化の具体例
	§14.3 数ベクトル空間での固有値,固有ベクトル
	§14.4 異なる固有値に属す固有ベクトル
	§14.5 固有値が重解(重根)になる場合
	§14.6 対角化可能であるための必要十分条件
	【14章の復習問題】
	A
第15章 複素行列の世界
	§15.1 ユニタリ行列とエルミート行列
	§15.2 エルミート行列(対称行列)の対角化
	§15.3 三角化
	【15章の復習問題】
	A
第16章 対角化の応用(1) ―2次形式―
	§16.1 2次同次式
	§16.2 2次同次式の標準化
	§16.3 いろいろな2次曲線
	§16.4 いろいろな2次曲面
	【16章の復習問題】
	A
第17章 対角化の応用(2) ―微分方程式,差分方程式―
	§17.1 線型微分方程式
	§17.2 具体的な微分方程式の解法
	§17.3 線型漸化式の解法
	§17.4 線型微分方程式と線型漸化式
	【17章の復習問題】
	A
第18章 ジョルダンの標準形(1)
	§18.1 対角化に代わる \"準対角化\"
	§18.2 行列多項式
	§18.3 フロベニウスの定理,ハミルトン・ケイリーの定理
	§18.4 行列の級数
	【18章の復習問題】
	A
第19章 ジョルダンの標準形(2)
	§19.1 冪零行列
	§19.2 冪零行列とそのジョルダンの標準形
	§19.3 最も基本的な行列のジョルダンの標準形
	§19.4 広義固有空間
	§19.5 ジョルダンの標準形(一般の場合)
	§19.6 ジョルダンの標準形への変形の具体例
	§19.7 線型の世界,非線型の世界
		19.7.1 ジョルダンの標準形の応用
		19.7.2 線型代数の応用―線型計画法
	【19章の復習問題】
	A
復習問題略解
索引




نظرات کاربران