دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: مواد ویرایش: نویسندگان: Anuj Kumar, Stefan Ioan Voicu, Vijay Kumar Thakur سری: Gels Horizons: From Science to Smart Materials ISBN (شابک) : 981164666X, 9789811646669 ناشر: Springer سال نشر: 2021 تعداد صفحات: 400 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 9 مگابایت
در صورت تبدیل فایل کتاب 3D printable Gel-inks for Tissue Engineering: Chemistry, Processing, and Applications به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب جوهرهای ژل قابل چاپ سه بعدی برای مهندسی بافت: شیمی، پردازش و کاربردها نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب مبانی و پیشینه لازم را برای محققان و متخصصان پژوهشی که در زمینه پرینت زیستی سه بعدی در مهندسی بافت کار می کنند فراهم می کند. در پرینت زیستی سه بعدی، طراحی و توسعه جوهرهای بیومتریال/جوهرهای زیستی یک چالش بزرگ در ارائه ریزمحیطهای سهبعدی خاص برای نیازهای آناتومیکی و معماری بافتهای بومی است. نقطه کانونی این کتاب ارائه شیمی اولیه مواد زیستی، بهروزرسانیها در مورد پردازش فعلی، پیشرفتها و چالشها و پیشرفتهای اخیر در پرینت سه بعدی/پرینت زیستی خاص بافت است. این کتاب به عنوان مرجعی برای چاپ زیستی عمل می کند و برای دانشجویان، محققان و متخصصان، دانشگاه های شاغل، دولت، صنعت پزشکی و مراقبت های بهداشتی ایده آل است.
This book provides the necessary fundamentals and background for researchers and research professionals working in the field of 3D bioprinting in tissue engineering. In 3D bioprinting, design and development of the biomaterial-inks/bio-inks is a major challenge in providing 3D microenvironments specific to anatomical and architectural demands of native tissues. The focal point of this book is to provide the basic chemistry of biomaterials, updates on current processing, developments, and challenges, and recent advancements in tissue-specific 3D printing/bioprinting. This book is will serve as a go-to reference on bioprinting and is ideal for students, researchers and professionals, working academia, government, the medical industry, and healthcare.
Preface About This Book Contents About the Editors 1 Introduction to 3D Printing Technology for Biomedical Applications 1 Introduction 2 Printing Mechanism: Classification of 3D Printing Techniques 2.1 Selective Laser Sintering 2.2 Stereolithography 2.3 Fused Deposition Modeling 2.4 Ink-Jet Printing 3 Evolution of 3D-Printed Medical Objects—Then and Now 4 3D Printable Materials for Medical Applications 5 Significance of 3D-Printed Objects in the Medical Field 6 Applications of 3D Printing 6.1 3D Printing of Surgical Preparation 6.2 Custom-Made Prosthetics 6.3 Dental 6.4 3D Printing of Tissues, Organoids, and Tissue Regeneration 6.5 Medication Dosage and Pharmacology 6.6 Manufacturing of Surgical Tools and Medical Metal Materials 7 Potential and Major Limitations References 2 Characterization of Bioinks for 3D Bioprinting 1 Bioink Definition, Related Terms 2 Properties of Bioinks 2.1 Bioink for Extrusion-Based Bioprinting 2.2 Bioink for Laser-Based Bioprinting 2.3 Bioink for Droplet-Based Bioink 3 Characterization of Bioinks 3.1 Rheology 3.2 Printability 3.3 Biofabrication Window 3.4 Cell Density 3.5 Cytocompatibility and Functionality 3.6 Bioink Purity 3.7 Bioink Degradation 3.8 Viscosity and Molecular Weight 3.9 Bioink Homogeneity 3.10 Solubility 3.11 Spheroid Characterization 4 Conclusion and Future Prospects References 3 3D Printing of Hydrogel Constructs Toward Targeted Development in Tissue Engineering 1 Introduction 2 3D Printing Technologies for Hydrogel Inks 2.1 Light-Assisted Direct-Printing 2.2 Inkjet Printing 2.3 Direct Dispensing 3 Trends and Strategies in Designing Hydrogel-Based Inks 3.1 Single-Component Hydrogel Inks 3.2 Bi-Component Hydrogel Inks 3.3 Nanocomposite Hydrogel Inks 3.4 Multicomponent Hydrogel Inks 3.5 Cell-Embedding and the Bio-Printability Window 4 Key Parameters in Designing Printable Hydrogel Formulation 4.1 Material Parameters 4.2 Crosslinking Strategies 4.3 Fabrication Parameters 4.4 Investigation of Printability 5 Evolution to 4D Printing References 4 Three-Dimensional Self-healing Scaffolds for Tissue Engineering Applications 1 Introduction 2 Understanding Nature’s Method of Self-healing 3 Self-healing Supramolecular Hydrogels 4 Self-assembled Hydrogels for Tissue Engineering and Drug Delivery Applications 5 Supramolecular Chemistry 5.1 Hydrogen Bonding 5.2 Metal–Ligand Coordination Complexation 5.3 Electrostatic Interaction 5.4 Host–Guest Interactions 6 π–π Interactions 7 Bioinspired Systems Chemistry 8 Conclusion References 5 Gel-Inks for 3D Printing in Corneal Tissue Engineering 1 Introduction 1.1 Structure of the Cornea 1.2 Desired Qualities for Cornea Replacement 2 Corneal Regeneration in Tissue Engineering 2.1 Scaffold-Based Tissue Engineering for Corneal Regeneration 2.2 Synthetic Biomaterials for Corneal Regeneration 2.3 Corneal Regeneration Using Naturally Derived Biomaterials 3 Corneal Regeneration Using Gel-Based Scaffolds 3.1 Desired Properties of Gel-Inks for 3D Printing in Corneal Tissue Engineering 3.2 Biocompatible 3D-Printing Techniques for Bioinks Design 4 Combination and Characterization of Gel-Inks for in Corneal Regeneration 4.1 Rheological and Printability Examinations 4.2 Light Transmission Examination 4.3 Mechanical Characterizations 4.4 Biocompatibility Assessment 4.5 Oxygen Permeability 5 Conclusion and Future Perspectives References 6 Three Dimensional (3D) Printable Gel-Inks for Skin Tissue Regeneration 1 Introduction 2 Skin: A Histological Overview 2.1 Epidermis 2.2 Basement Membrane 3 Skin Wound Healing: What We Know and Need to Know 4 Bioengineered Skin Substitutes 4.1 Epidermal Substitutes 4.2 Dermal Substitutes 4.3 Dermo-Epidermal Substitutes 5 Advanced Strategies for Skin Repair and Regeneration 5.1 Top-Down Approaches for Skin Regeneration 5.2 Bottom-Up Approaches for Skin Regeneration 5.3 Laser-Assisted 3D Bioprinting 5.4 Drop-Based Bioprinting 5.5 Extrusion-Based Bioprinting 5.6 Stereolithography-Based Bioprinting 5.7 Electrohydrodynamic-Based Bioprinting 5.8 Microfluidic-Based Bioprinting 6 Natural 3D Printable Gel-Inks for Skin Regeneration 6.1 Alginate 6.2 Collagen 6.3 Gelatin 6.4 Chitosan 6.5 Silk Fibroin 6.6 Decellularized Extracellular Matrix (dECM) 7 Synthetic 3D Printable Gel-Inks for Skin Regeneration 7.1 Poly(ε-caprolactone) (PCL) 7.2 Poly(Lactic Acid) (PLA) 7.3 Polyurethane (PU) 8 Conclusion References 7 Biofunctional Inks for 3D Printing in Skin Tissue Engineering 1 Introduction 2 The Structure and Function of Skin 3 Wound Types and Wound Healing Process 4 Skin Tissue Engineering 5 Overview of 3D Bioprinting 5.1 3D Bioprinting Technologies 6 3D Skin Bioprinting 6.1 Design Considerations for Skin Bioprinting 7 Biofunctional Inks for Bioprinting in Skin Tissue Engineering 7.1 Natural Bioinks 7.2 Bioinks Based on Synthetic Polymers 8 Current Challenges and Advances in Developing of Biofunctional Inks in Skin Tissue Engineering 9 Conclusion References 8 Bioceramic-Starch Paste Design for Additive Manufacturing and Alternative Fabrication Methods Applied for Developing Biomedical Scaffolds 1 Introduction 2 Starch 3 Bioceramics-Starch Pastes 3.1 Oxide Ceramics and Starch 3.2 Glasses and Glass–Ceramics and Starch 3.3 Calcium Phosphates and Starch 4 Conventional Methods for Bioceramic Scaffold Fabrication 5 Additive Manufacturing for Bioceramic Scaffold Fabrication 6 Bone Scaffold Prototype with Hydroxyapatite and Starch 6.1 Technology Description 6.2 Raw Ceramic Preparation 6.3 Powder Preparation and Processing 6.4 Scaffold Design 6.5 Forming, Processing, and Sintering 6.6 Prototype Morphology 7 Conclusions References 9 Additive Manufacturing of Bioceramic Scaffolds for Bone Tissue Regeneration with Emphasis on Stereolithographic Processing 1 Scaffolds for Bone Repair: An Overview 2 Scaffold Requirements 2.1 Biocompatibility 2.2 Porosity 2.3 Mechanical Properties 2.4 Biodegradability 2.5 Surface Properties and Interaction with Cells 3 Conventional Methods for Ceramic Scaffold Fabrication 3.1 Foaming Methods 3.2 Phase Separation Methods 3.3 Spinning Methods 3.4 Thermal Consolidation of Particles 3.5 Sponge Replica Method 4 Additive Manufacturing Technologies for Ceramic Scaffold Fabrication 5 Stereolithographic Methods 5.1 Processing 5.2 The Slurry: Composition and Characteristics 5.3 The Photopolymerization Process: Chemical Basis 5.4 Key Parameters for the Photopolymerization Process 5.5 Post-processing 5.6 SLA: Advantages and Disadvantages 6 The Latest Frontier: Digital Light Processing (DLP)-Based Stereolithography 6.1 System Setup 6.2 Digital Micro-mirror Device (DMD) 7 Current Applications of SLA- and DLP-Derived Ceramic Scaffolds 8 Conclusions References 10 3D Printable Gel-Inks for Microbes and Microbial Structures 1 Introduction 2 Bioprinting 3 Bioprinting Techniques 4 Bioprinting Materials 5 Bioprinting and Microbes 5.1 Viruses 5.2 Bacteria and Bacterial Structures 6 Summary and Concluding Remarks References 11 Methods of Polysaccharides Crosslinking: Future-Promising Crosslinking Techniques of Alginate Hydrogels for 3D Printing in Biomedical Applications 1 Introduction 2 Types of Polysaccharides 2.1 Sulfated Polysaccharides 2.2 Non-sulfated Polysaccharides 3 Methods for Crosslinking the Polysaccharides 3.1 Physical Crosslinking 3.2 Chemical Crosslinking 4 Some Applications of 3D-Based Cosslinking Alginate Hydrogels in Biomedicine 4.1 Tissue Engineering 4.2 Wound Dressing 4.3 Drug Delivery 5 Summary References 12 Future Perspectives for Gel-Inks for 3D Printing in Tissue Engineering 1 Introduction 2 From Biomaterials to Tissue Engineering 3 Future Perspectives for 3D Bioprinting 4 Conclusions References