ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب 2006 international conference on electrorheological fluids and magnetorheological suspensions

دانلود کتاب کنفرانس بین المللی سیالات الکترورئولوژیکی و سوسپانسیون های مغناطیسی 2006

2006 international conference on electrorheological fluids and magnetorheological suspensions

مشخصات کتاب

2006 international conference on electrorheological fluids and magnetorheological suspensions

ویرایش:  
نویسندگان: ,   
سری:  
 
ناشر: SAGE  
سال نشر: 2007 
تعداد صفحات: 843 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 50 مگابایت 

قیمت کتاب (تومان) : 42,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 17


در صورت تبدیل فایل کتاب 2006 international conference on electrorheological fluids and magnetorheological suspensions به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب کنفرانس بین المللی سیالات الکترورئولوژیکی و سوسپانسیون های مغناطیسی 2006 نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی درمورد کتاب به خارجی



فهرست مطالب

CONTENTS......Page 10
1 Introduction......Page 20
2 Experimental......Page 21
3 Results......Page 22
References......Page 26
1 Introduction......Page 27
3.1 Numerical analysis of electric field......Page 28
3.2.2 Experimental setup for shear test......Page 30
3.2.3 The ERG effect for various insulating materials......Page 31
References......Page 32
1 Introduction......Page 33
2.1 Preparation of initial materials and ER fluids......Page 34
3 Results and Discussion......Page 35
4 Conclusions......Page 38
References......Page 39
2. Viscosity and the Particle Size Distribution......Page 40
3. Reducing the Viscosity......Page 43
4. Experimental Verification and Applications......Page 45
References......Page 46
1 Introduction......Page 48
2 Experimental Techniques......Page 49
3 Results and Discussion......Page 51
4 Conclusions......Page 52
References......Page 53
2. Magnetic susceptibility in the perpendicular field.......Page 55
3. Straightening of thermal fluctuations in an AC magnetic field.......Page 58
4. Conclusion.......Page 61
References......Page 62
1 Introduction......Page 63
2.2 Viscometry, conductivity and dielectric measurements......Page 64
3.1 Flow behaviour......Page 65
3.2 Dielectric properties and ER activity......Page 66
3.3 The efficiency of ER fluids......Page 68
References......Page 69
1 Introduction......Page 70
3.1 Variation of the iron particle content......Page 71
3.2 Curing in a magnetic field......Page 72
3.3 Variation of crosslinking......Page 73
3.4 Variation of frequency and amplitude......Page 74
3.5 Shape memory effect......Page 75
References......Page 76
1 Introduction......Page 77
2 Materials Preparation and Observation......Page 78
4.1 Properties comparison between F-MRS and M-MRS......Page 79
4.2 Static Yield Stress Measurement for F-MRS......Page 80
5 Conclusions......Page 82
References......Page 83
1 Introduction......Page 85
2 Results and Discussion......Page 86
3 Conclusion......Page 89
References......Page 90
Polar Molecule Type Electrorheological Fluids K. Lu, R. Shen, X. Wang, G. Sun, W. Wen and J. Liu......Page 91
References......Page 97
1 Introduction......Page 99
2 Element composition of examined actuator......Page 100
4.1 Driving characteristics of reciprocating motion......Page 101
4.2 Dynamic behavior ofpermanent magnet in higher magnetic fields......Page 102
4.3 Effects of volume of magnetic Fluid Systems Laboratory......Page 103
5 Conclusions......Page 104
References......Page 105
1 Introduction......Page 106
3 Experimental Characterization......Page 107
4 Results and Discussion......Page 108
References......Page 109
1 Introduction......Page 113
2.1 Materials......Page 114
3 Results and Discussion......Page 115
References......Page 119
1 Introduction......Page 120
2.1 Flow curves and characteristic......Page 121
2.2 Switching behavior......Page 122
2.4 In use thickening (IUT)......Page 123
3.1 Design and test rig......Page 124
3.2 700 Nm MRF 4WD pilot clutch......Page 125
References......Page 126
1 Introduction......Page 127
2 Experimental setup......Page 128
3 Experimental results......Page 129
4 Discussion......Page 131
References......Page 132
1 Introduction......Page 133
2 Test Apparatus......Page 134
3 Test Results......Page 136
4 Conclusion......Page 138
References......Page 139
1 Introduction......Page 140
2.3 Characterization......Page 141
3 Results and discussion......Page 142
References......Page 145
1. Introduction......Page 147
2. Simulation Model......Page 148
3. Simulation Results......Page 149
References......Page 152
1. Introduction......Page 154
2. Experimental......Page 155
3. Results and discussion......Page 156
References......Page 158
1 Introduction......Page 159
2.2. Immobilization of initiator and graft polymerization......Page 162
3.1. Initiator immobilization and ATRP of butyl acrylate on iron particles.......Page 163
References:......Page 164
1. Introduction......Page 166
2.1 Without dispersion......Page 167
2.2 With dispersion......Page 169
3.1 Without dispersion......Page 170
3.2 With dispersion......Page 171
4. Discussion and conclusion......Page 173
References......Page 174
1 Introduction......Page 176
2.1 Materials......Page 177
3.1 DEM Simulation of Close Packing Density......Page 178
3.2 Observation of Magnetic Clusters: Physical Characterization......Page 179
3.3 The shear rate - shear stress curves......Page 180
References......Page 182
1 Introduction......Page 184
2 Approach......Page 185
3 Results......Page 188
References......Page 190
1 Introduction......Page 192
2.2 Experiments......Page 193
3.1 Simulations......Page 194
3.2 Experiments......Page 196
References......Page 198
1 Introduction......Page 199
2 Material Background on UNR MR Fluids......Page 200
4.1 Of State Viscosity......Page 201
4.2 Shear Yield Stress......Page 202
4.3 Viscoelastic Properties......Page 203
4.4 Particle Settling Rate......Page 204
References......Page 205
1 Introduction......Page 206
3.1 Magnetization and Particle size measurements of the pure CIP......Page 207
3.2.1 Oscillatory measurements......Page 208
3.2.2 Steady Flow Measurements......Page 210
3.2.3 Magneto-sweep under steady shear flow......Page 211
4 Conclusions......Page 212
References......Page 213
1. Introduction......Page 214
2. Elastomer's preparation and characterization......Page 215
3. Modelling of the two spheres system......Page 216
4. Dispersion of iron particles in a liquid crystal......Page 219
References......Page 220
1 Introduction......Page 221
2.2 Dynamic Testing System of MRE Perfomance......Page 222
3.1 Natural Rubber Based MRE......Page 223
3.2 Silicone Rubber Based MRE......Page 225
Conclusions......Page 226
References......Page 227
2.1.1 Combination of silica and PANI......Page 229
2.2 Methods......Page 230
3.2.1 Viscosity......Page 231
3.2.2 Yield stress......Page 232
3.3.1 Viscosity......Page 233
4 Conclusion......Page 234
References......Page 235
1 Introduction......Page 236
2 Mathematical Model......Page 237
3 Procedure for the MATLAB-FLUENT Interface......Page 238
4 Results......Page 239
References.......Page 241
2 Experimental part......Page 243
References......Page 249
1. Introduction......Page 250
2. Statistical mechanics of surface aligned layers......Page 253
References......Page 257
1 Introduction......Page 259
2 Magnetorhological Finishing......Page 260
3 Recent Advances in Scaling MRF technology......Page 262
3.1 MRF Platforms for Large Apertures......Page 263
4.1 Phase Plates......Page 264
6 References......Page 265
1 Introduction......Page 267
2.1 Experimental Apparatus......Page 268
3.2 Time Dependence of Ultrasonic Propagation Velocity......Page 270
3.3 Hysteresis of Ultrasonic Propagation Velocity......Page 272
4 Conclusion......Page 273
References......Page 274
1 Introduction......Page 275
2.2 Mechanism of the ERG polishing process......Page 276
3.1 Experimental setup and procedure......Page 277
3.2 Experimental result......Page 278
4 Observation of the behavior of the abrasive grains during polishing process......Page 279
References......Page 280
1 Introduction......Page 282
2 MR Fluid Synthesis and Samples Descriptions......Page 283
3 Rheological Characterization Method......Page 284
4 Conclusion......Page 287
References......Page 288
1. Introduction......Page 289
2. Experiment apparatus......Page 290
4. Field induced torque transmission ability......Page 291
5. Speed adjustment by external field......Page 293
6. Response to square wave electric fields......Page 294
7. Conclusion......Page 297
References......Page 298
1 Introduction......Page 299
3 Results and Discussion......Page 300
References......Page 302
1 Introduction......Page 304
2.2 Rheornetrical measurements......Page 305
3.1 Test I - Small strain tests using inverse ferrofluid......Page 306
5 Acknowledgements......Page 309
References......Page 310
2. Experimental......Page 311
3. Results and discussion......Page 312
References......Page 317
1 Introduction......Page 318
2.1 Forces expressions......Page 319
2.2 The stress tensor......Page 320
3.1 Particles orientation......Page 321
3.2 Yield Stress Calculation......Page 322
References......Page 323
1 Introduction......Page 325
3.1 Structure characterization......Page 326
3.2 Morphological analysis......Page 327
3.3 Rheological properties......Page 329
References......Page 331
1 Introduction......Page 332
3.3 Characterization of the core-shell particles and its water based MR fluid......Page 333
4.1 Characteristics of the poly(ethylene glycol)-coated carbonyl iron particles......Page 334
4.4 Magnetorheological properties of the water-based MR fluid......Page 336
5 Conclusions......Page 337
References......Page 338
1 Introduction......Page 339
3 Results and Discussion......Page 340
References......Page 343
1 Introduction......Page 345
2 Modeling and Design......Page 346
3 Control Experiments......Page 348
References......Page 350
1 Introduction......Page 352
2 Configuration of Self-sensing MR Dampers......Page 353
3 Fabrication of Self-Sensing MR Dampers......Page 355
4 Performance Tests of Self-Sensing MR Dampers......Page 357
References......Page 358
1 Introduction......Page 359
2.1 Jet Stabilization......Page 360
2.3 Polishing Performance......Page 361
3.1 Theoretical considerations......Page 362
3.2 Model verification......Page 363
6 References......Page 365
1 Introduction......Page 366
2.2 Computation of Fuzzy Response [9]......Page 367
3 Fuzzy Response of a MR Damper......Page 368
3.2 Fuzzy Response of the Optimization Objective......Page 369
4.1 Fuzzy Response of the Optimization Objective......Page 370
5 Conclusions......Page 371
References......Page 372
1 Introduction......Page 373
3 Test Setup......Page 374
4.2 Dynamic Analysis of the Passive TKA......Page 375
5 Dynamic Analysis of MR TVA with Semi-Active Control......Page 376
5.2 On-Off Groundhook Controlled TVAs......Page 377
5.3 Continuous Groundhook Controlled TVAs......Page 378
References......Page 379
1 Introduction......Page 380
2 The kinetic theory-based elastic dumbbell model of MR fluids......Page 381
3 Preparation and characterization of MR fluids......Page 382
4 MR fluid-based force feedback rotary system......Page 383
5.2 Transient/Dynamic......Page 384
7 Conclusion......Page 385
8 References......Page 386
1 Introduction......Page 387
2 Requirements and Basic Device Architecture......Page 388
3 Concept Design......Page 390
4 Test Results......Page 392
5 Conclusions and Recommendations......Page 393
2 Multi-Mode MR Isolator......Page 394
3 Damper Characterization......Page 395
3.2 Complex Stiffness......Page 396
4 Theoretical Modeling......Page 398
References......Page 400
1 Introduction......Page 401
2 Spherical ER Joint......Page 402
3 Sliding mode controller......Page 404
4 Results and Discussions......Page 405
References......Page 407
2 Automotive Primary Suspensions......Page 408
4 Secondary Vehicle Suspension Systems......Page 410
5.2 Settling......Page 411
5.3 Component Wear and Seal Life......Page 412
6 MR Fluid Status Today......Page 413
References......Page 414
1.1 Multi channel Concentric clutch......Page 415
2 Heat Transfer Comparison (Single Rotor Clutches)......Page 416
3.1 Summary of the Models......Page 417
4 Conclusions......Page 418
References......Page 421
2 Flow Mode MR Damper......Page 422
3 Magnetic Field Analysis......Page 424
4.1 Experimental Setup......Page 425
4.2 Experimental Results......Page 426
References......Page 428
1 Introduction......Page 429
2 Design of the MRF Damper......Page 430
3 MRF Damper Characterization......Page 431
References......Page 435
1 Introduction......Page 436
3.1 Procedure for measurement of frictional force and alignment......Page 437
3.2 Relation between frictional force and applied voltage......Page 438
3.3 Relation between the surface alignment and applied voltage......Page 439
4.1 Experimental setup and cutting conditions......Page 440
4.2 Results of the cutting test......Page 441
References......Page 442
1 Introduction......Page 443
2.1 ER Brake......Page 445
2.2 Isokinetic Exercise System Using ER Brake......Page 446
3 Results......Page 448
References......Page 449
1 Introduction......Page 450
2 System Model......Page 451
4.2. Semi-Active Suspensions......Page 453
4.3. Effect ofDeluyed Control Input on the System Performance......Page 454
References......Page 455
1 INTRODUCTION......Page 457
3 HYDRO-MECHANICAL MODELING......Page 458
5 CONLUSIONS......Page 461
Reference......Page 462
1 Introduction......Page 464
2.1 Bingham-plastic model......Page 465
2.2 Biviscous model......Page 466
2.3 Herschel-Bulkley model......Page 468
3 Nondimensional analysis......Page 469
References......Page 470
1 Introduction......Page 471
2 Dynamic Characterization of The MRF By Pass Damper......Page 472
3 Model and Controls......Page 473
5 Conclusions......Page 475
References......Page 477
1 Introduction......Page 478
2 Sloshing of Magnetic fluids......Page 479
3 Analytical Model of TMFD......Page 480
4.2 Natural Frequency and Frequency Response......Page 482
5 Active Control......Page 483
References......Page 484
1 Introduction......Page 486
2 The Characteristics of the SMER Damper......Page 487
3. Two-degree-of-freedom vibration system......Page 489
3.1 Control Strategy......Page 490
3.2 Experimental Setup......Page 493
3.3 Experimental Results and Discussions......Page 495
References......Page 496
2 MRF Fan Drive......Page 498
3 Experimental Setup......Page 500
4.1 Durability Test......Page 501
4.2 Performance Test......Page 502
4.3 Fluid Analysis......Page 503
References......Page 504
1 Introduction......Page 506
2 MR Damper......Page 507
3.1 Dynamic model......Page 508
3.2 The Sliding Mode Controller......Page 509
4 The Fuzzy-Sliding Mode Controller......Page 511
5 Performance Evaluation and Discuss......Page 512
6 Conclusion......Page 513
References......Page 514
1 Introduction......Page 515
2 Design of ER Shock Absorber......Page 516
3 Performance Evaluation via Vehicle Field Test......Page 517
4 Field Test Results and Discussion......Page 519
6 Acknowledgement......Page 521
References......Page 522
1 Introduction......Page 523
2.1 Configuration......Page 524
3 Results and Discussions......Page 526
References......Page 529
1 Introduction......Page 531
2 Dissipativity and Dissipativity Indices......Page 532
3 Semiactive Control of Base- isolated Benchmark Building with MR Dampers......Page 533
4 Numerical Simulations......Page 534
References......Page 537
1 Introduction......Page 538
3 Draft models of the delay of ER fluids......Page 539
4.2 The 1st-order delay in Q......Page 540
5.1 Introduction of friction model......Page 541
5.5 First ordered delay in E......Page 542
References......Page 544
2.1 System Overview......Page 546
2.2 MR Joystick......Page 547
2.3 MR Joystick Kinematics Analysis......Page 548
3.1 System Implementation......Page 549
3.2 Interface demonstrutions......Page 550
4 Discussion......Page 551
References......Page 552
1 Introduction......Page 553
2.1 Construction of The Linear MR Brake......Page 554
3.1 The Prototype of An Intelligent Prosthetic Ankle Joint......Page 555
3.2 Control Circuit......Page 556
3.3 Object and Methods of walking experiments......Page 557
3.4 Results and Discussion......Page 558
References......Page 559
1 Introduction......Page 560
2 Theoretical Modeling of the MR damper......Page 561
3.1 Theoretical Analysis......Page 563
3.2 Electromagnetic Finite Element Analysis......Page 565
4 Experimental Study......Page 566
5 The Results and Discussions......Page 567
6 Conclusions......Page 568
References......Page 569
1 Introduction......Page 570
2 Experiment......Page 571
3.1 Magnetic Fluid Sloching......Page 572
3.2 Two-layered Fluid Sloshing......Page 574
References......Page 575
1 lntroduction......Page 576
2 Design concept of NC type MR clutch......Page 577
3 Result of experiment on the transmitted torque characteristics......Page 579
4 Verification of safety function of the NC type clutch......Page 580
References......Page 581
1 Introduction......Page 582
2 Nonlinear Damper Modeling......Page 583
3 Damper Design......Page 584
4 Damper Fabrication......Page 585
5 Damper Testing and Characterization......Page 586
6 Conclusions......Page 587
References......Page 588
1 Introduction......Page 589
3 Mathematical model......Page 590
4 Results......Page 593
References......Page 595
1 Introduction......Page 596
2.1 Principle and Prototype of MSMRD......Page 597
3.1 Experimental Setup......Page 599
3.2 Testing Results under Sinusoidal Excitations......Page 600
References......Page 602
1 Introduction......Page 603
2 Experimental set-up......Page 604
3 Results and discussions......Page 605
Reference......Page 608
1 Introduction......Page 610
2 Design methodology and experiment of ER active microfluidic elements......Page 611
3 Hybrid approached of ER active mixers......Page 612
References......Page 614
1 Introduction......Page 615
2 MR damper Model Comparison for Building Response Control......Page 616
3.1 The range ofRiction force of the MR damper......Page 617
3.2 Control algorithm......Page 618
4.1 SDOF system......Page 619
4.2 A three story structure......Page 620
References......Page 621
1 Introduction......Page 622
1.1 Control Strategies Simulation......Page 623
1.1.1 Oxdoff and Continuously Variable Control......Page 624
1.1.2 Fuzzy Strategy......Page 625
3 Results......Page 627
References......Page 628
1 Introduction......Page 629
3.1 Effect of the applied magnetic field......Page 630
3.2 Rheological behavior without magnetic field......Page 631
3.4 Effect of the viscosity of the carrier liquid......Page 632
3.6 Response time......Page 633
4 Conclusions......Page 634
References......Page 635
1 Introduction......Page 636
2.1 Dynamic Modeling of Electrorheological Damper......Page 637
2.2 Modeling of Quarter Vehicle ER Suspension System......Page 639
3 Controller Design......Page 640
4 Results and Discussion......Page 641
References......Page 642
1 Introduction......Page 643
2 ER Fluid Systems......Page 644
3 Dielectric Analysis......Page 645
4 Results and Discussion......Page 646
References......Page 648
1 Introduction......Page 650
2 Experimental......Page 651
3 Results and discussion......Page 652
References......Page 655
1 Introduction......Page 657
2 Electrorheological Brake System......Page 658
3 Controller Design......Page 660
5 Conclusion......Page 661
References......Page 663
1 Introduction......Page 664
2.1 Damper description......Page 665
2.2 Damper testing......Page 666
3.2 Complex modulus......Page 667
3.3 Equivalent damping......Page 669
References......Page 670
1 Introduction......Page 671
3.1 Simulation of Mode Shapes......Page 672
3.3 Magnetic Circuit Analyses......Page 673
4 Theoretic Analysis of Shift-Frequency Property......Page 674
5.2 Vibration Attenuation......Page 676
References......Page 677
1 Introduction......Page 678
2.1 Sample material......Page 679
2.2 Experimental setup and evaluation method......Page 680
3 Results......Page 682
4 Discussion......Page 683
References......Page 685
1 Introduction......Page 686
2.2 Improvement of magnetic circuit......Page 687
3.1 Developed MR brake with C-type yokes......Page 688
3.2 Experimental confirmation for the output characteristics of new MRB......Page 690
4 Conclusion......Page 691
References......Page 692
2 Methods......Page 693
4 Capillary raising......Page 695
5 Conclusion......Page 698
References......Page 699
1 Introduction......Page 700
2 Modeling of Quarter Vehicle MR Suspension System......Page 701
3 Controller Design......Page 703
4 Results and Discussion......Page 705
References......Page 706
1 Introduction......Page 708
2.1 MR Damper Design and Modeling......Page 709
2.2 Building Model......Page 710
2.3 Building-HMD Model......Page 711
3 Pseudo-Earthquake Excitation......Page 712
Reference......Page 714
1 Introduction......Page 715
2 Building Structure and MR Dampers Modeling......Page 716
3 Numerical Evaluation of SSI System......Page 718
4 Building Structure with a MR Damper Considering SSI Effect......Page 720
References......Page 721
1 Introduction......Page 723
2.1 Dynamic Modeling of Electrorheological Damper......Page 724
2.2 Modeling of Quarter Vehicle ER Suspension System......Page 725
3 Controller Design......Page 726
4 Results and Discussion......Page 728
References......Page 729
1 Introduction......Page 731
2 Magnetorheological Fluid Synthesis and Sample Types......Page 733
3 Measurement of Sedimentation Rate......Page 734
4 Results......Page 735
Acknowledgement......Page 736
References......Page 737
1 Introduction......Page 738
2.3 Characterization......Page 739
3 Results and discussion......Page 740
References......Page 743
1 Introduction......Page 745
2.4 Characterization......Page 746
3 Results and discussion......Page 747
References......Page 750
1. Introduction......Page 752
2. Dynamic Modeling of Hybrid Engine Mount......Page 753
3. Control Characteristics......Page 757
References......Page 758
1 Introduction......Page 760
2.1 Model......Page 761
2.4 Estimation of yield stress......Page 762
3.1 Experimental condition......Page 763
4.1 Model......Page 764
4.2 Electric field at ERG surface......Page 765
Reference......Page 766
1. Introduction......Page 767
2. Dynamic Modeling of MR Impact Damper......Page 768
3.1 Dynamic Modeling of the Vehicle System......Page 770
3.2 Performance Evaluation of the Vehicle System......Page 771
References......Page 773
1. Introduction......Page 775
2.1 Manufacture of axially aligned MRE specimens......Page 776
2.2 Manufacturing Challenges......Page 778
3.1 Validation of field dependent stiffness......Page 779
4. Conclusion......Page 780
References......Page 781
1 Introduction......Page 782
3 Results......Page 783
References......Page 787
2 Experimental......Page 788
3.1 58-62 A Actual Current......Page 789
3.3 60-70 A Actual Current......Page 791
3.4 70-90 A Actual Current......Page 794
3.5 78-96 & 100-116 A Actual Current......Page 795
References:......Page 796
2.1 Working principle......Page 798
2.2. Optimization Design......Page 799
3.1 Steady-State Performance Testing......Page 800
3.2 Subhysteresis Model......Page 801
3.3 Comparison between Model-Prediction Results and Experimental Results......Page 803
References......Page 804
1 Introduction......Page 805
2 Methods......Page 806
3 Results......Page 807
4 Discussion......Page 809
References......Page 810
1 Introduction......Page 812
2 Signum function based damper controller......Page 813
3.1 Experimental setup......Page 814
3.2 Open loop testing of the MR damper......Page 815
3.3 Closed loop testing of the MR damper based on signum function controller......Page 816
References......Page 818
1 Introduction......Page 819
2.3 Electrorheological measurements......Page 820
3.1 Characterizatin of PPy/SBA-15 nanocomposites......Page 821
3.2 ER properties of PPy/SBA-15 suspension......Page 822
4 Conclusion......Page 824
References......Page 825
1 Introduction......Page 827
3 Earthquake Excitations......Page 828
4 Equivalent Damping Ratio......Page 829
5 Effects of Excitation Characteristics on Equivalent Damping Ratios......Page 831
References......Page 833
2 Experimental part......Page 834
3 Results......Page 836
4 Conclusion......Page 840
References......Page 841




نظرات کاربران