ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Machine Learning and Knowledge Discovery in Databases: European Conference, ECML PKDD 2017, Skopje, Macedonia, September 18–22, 2017, Proceedings, Part I

دانلود کتاب یادگیری ماشین و کشف دانش در پایگاه های داده: کنفرانس اروپایی، ECML PKDD 2017، Skopje، Macedonia، 18-22 سپتامبر 2017، پروسه، قسمت اول

 Machine Learning and Knowledge Discovery in Databases: European Conference, ECML PKDD 2017, Skopje, Macedonia, September 18–22, 2017, Proceedings, Part I

مشخصات کتاب

Machine Learning and Knowledge Discovery in Databases: European Conference, ECML PKDD 2017, Skopje, Macedonia, September 18–22, 2017, Proceedings, Part I

ویرایش: 1 
نویسندگان: , , , ,   
سری: Lecture Notes in Artificial Intelligence 10534 
ISBN (شابک) : 9783319712482, 9783319712499 
ناشر: Springer International Publishing 
سال نشر: 2017 
تعداد صفحات: 898 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 64 مگابایت 

قیمت کتاب (تومان) : 42,000



کلمات کلیدی مربوط به کتاب یادگیری ماشین و کشف دانش در پایگاه های داده: کنفرانس اروپایی، ECML PKDD 2017، Skopje، Macedonia، 18-22 سپتامبر 2017، پروسه، قسمت اول: داده کاوی و کشف دانش



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 10


در صورت تبدیل فایل کتاب Machine Learning and Knowledge Discovery in Databases: European Conference, ECML PKDD 2017, Skopje, Macedonia, September 18–22, 2017, Proceedings, Part I به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب یادگیری ماشین و کشف دانش در پایگاه های داده: کنفرانس اروپایی، ECML PKDD 2017، Skopje، Macedonia، 18-22 سپتامبر 2017، پروسه، قسمت اول نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب یادگیری ماشین و کشف دانش در پایگاه های داده: کنفرانس اروپایی، ECML PKDD 2017، Skopje، Macedonia، 18-22 سپتامبر 2017، پروسه، قسمت اول



مجموعه مقالات سه جلدی LNAI 10534 – 10536، مجموعه مقالات داوری کنفرانس اروپایی در زمینه یادگیری ماشین و کشف دانش در پایگاه‌های داده، ECML PKDD 2017، در اسکوپیه، مقدونیه، در سپتامبر 2017 برگزار می‌شود.

مجموع 101 مورد منظم مقالات ارائه شده در بخش اول و دوم به دقت مورد بررسی قرار گرفت و از بین 364 مورد ارسالی انتخاب شد. 47 مقاله در علم داده کاربردی، شهد و آهنگ آزمایشی وجود دارد.

مشارکت‌ها در بخش‌های موضوعی با نام‌های زیر سازماندهی شدند:
بخش اول: تشخیص ناهنجاری. بینایی کامپیوتری؛ گروه ها و فرا یادگیری؛ انتخاب و استخراج ویژگی؛ روش های هسته؛ یادگیری و بهینه سازی، فاکتورسازی ماتریس و تانسور؛ شبکه ها و نمودارها؛ شبکه های عصبی و یادگیری عمیق.
قسمت دوم: الگو و دنباله کاوی. حریم خصوصی و امنیت؛ مدل ها و روش های احتمالی؛ توصیه؛ پسرفت؛ یادگیری تقویتی؛ کشف زیر گروه؛ سری های زمانی و جریان ها؛ انتقال و یادگیری چند وظیفه ای؛ یادگیری بدون نظارت و نیمه نظارت.
قسمت سوم: مسیر علم داده کاربردی. مسیر شهد؛ و آهنگ آزمایشی.


توضیحاتی درمورد کتاب به خارجی

The three volume proceedings LNAI 10534 – 10536 constitutes the refereed proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD 2017, held in Skopje, Macedonia, in September 2017.

The total of 101 regular papers presented in part I and part II was carefully reviewed and selected from 364 submissions; there are 47 papers in the applied data science, nectar and demo track.

The contributions were organized in topical sections named as follows:
Part I: anomaly detection; computer vision; ensembles and meta learning; feature selection and extraction; kernel methods; learning and optimization, matrix and tensor factorization; networks and graphs; neural networks and deep learning.
Part II: pattern and sequence mining; privacy and security; probabilistic models and methods; recommendation; regression; reinforcement learning; subgroup discovery; time series and streams; transfer and multi-task learning; unsupervised and semisupervised learning.
Part III: applied data science track; nectar track; and demo track.



فهرست مطالب

Front Matter ....Pages I-LXIII
Front Matter ....Pages 1-1
Concentration Free Outlier Detection (Fabrizio Angiulli)....Pages 3-19
Efficient Top Rank Optimization with Gradient Boosting for Supervised Anomaly Detection (Jordan Frery, Amaury Habrard, Marc Sebban, Olivier Caelen, Liyun He-Guelton)....Pages 20-35
Robust, Deep and Inductive Anomaly Detection (Raghavendra Chalapathy, Aditya Krishna Menon, Sanjay Chawla)....Pages 36-51
Sentiment Informed Cyberbullying Detection in Social Media (Harsh Dani, Jundong Li, Huan Liu)....Pages 52-67
zooRank: Ranking Suspicious Entities in Time-Evolving Tensors (Hemank Lamba, Bryan Hooi, Kijung Shin, Christos Faloutsos, Jürgen Pfeffer)....Pages 68-84
Front Matter ....Pages 85-85
Alternative Semantic Representations for Zero-Shot Human Action Recognition (Qian Wang, Ke Chen)....Pages 87-102
Early Active Learning with Pairwise Constraint for Person Re-identification (Wenhe Liu, Xiaojun Chang, Ling Chen, Yi Yang)....Pages 103-118
Guiding InfoGAN with Semi-supervision (Adrian Spurr, Emre Aksan, Otmar Hilliges)....Pages 119-134
Scatteract: Automated Extraction of Data from Scatter Plots (Mathieu Cliche, David Rosenberg, Dhruv Madeka, Connie Yee)....Pages 135-150
Unsupervised Diverse Colorization via Generative Adversarial Networks (Yun Cao, Zhiming Zhou, Weinan Zhang, Yong Yu)....Pages 151-166
Front Matter ....Pages 167-167
Dynamic Ensemble Selection with Probabilistic Classifier Chains (Anil Narassiguin, Haytham Elghazel, Alex Aussem)....Pages 169-186
Ensemble-Compression: A New Method for Parallel Training of Deep Neural Networks (Shizhao Sun, Wei Chen, Jiang Bian, Xiaoguang Liu, Tie-Yan Liu)....Pages 187-202
Fast and Accurate Density Estimation with Extremely Randomized Cutset Networks (Nicola Di Mauro, Antonio Vergari, Teresa M. A. Basile, Floriana Esposito)....Pages 203-219
Front Matter ....Pages 221-221
Deep Discrete Hashing with Self-supervised Pairwise Labels (Jingkuan Song, Tao He, Hangbo Fan, Lianli Gao)....Pages 223-238
Including Multi-feature Interactions and Redundancy for Feature Ranking in Mixed Datasets (Arvind Kumar Shekar, Tom Bocklisch, Patricia Iglesias Sánchez, Christoph Nikolas Straehle, Emmanuel Müller)....Pages 239-255
Non-redundant Spectral Dimensionality Reduction (Yochai Blau, Tomer Michaeli)....Pages 256-271
Rethinking Unsupervised Feature Selection: From Pseudo Labels to Pseudo Must-Links (Xiaokai Wei, Sihong Xie, Bokai Cao, Philip S. Yu)....Pages 272-287
SetExpan: Corpus-Based Set Expansion via Context Feature Selection and Rank Ensemble (Jiaming Shen, Zeqiu Wu, Dongming Lei, Jingbo Shang, Xiang Ren, Jiawei Han)....Pages 288-304
Front Matter ....Pages 305-305
Bayesian Nonlinear Support Vector Machines for Big Data (Florian Wenzel, Théo Galy-Fajou, Matthäus Deutsch, Marius Kloft)....Pages 307-322
Entropic Trace Estimates for Log Determinants (Jack Fitzsimons, Diego Granziol, Kurt Cutajar, Michael Osborne, Maurizio Filippone, Stephen Roberts)....Pages 323-338
Fair Kernel Learning (Adrián Pérez-Suay, Valero Laparra, Gonzalo Mateo-García, Jordi Muñoz-Marí, Luis Gómez-Chova, Gustau Camps-Valls)....Pages 339-355
GaKCo: A Fast Gapped k-mer String Kernel Using Counting (Ritambhara Singh, Arshdeep Sekhon, Kamran Kowsari, Jack Lanchantin, Beilun Wang, Yanjun Qi)....Pages 356-373
Graph Enhanced Memory Networks for Sentiment Analysis (Zhao Xu, Romain Vial, Kristian Kersting)....Pages 374-389
Kernel Sequential Monte Carlo (Ingmar Schuster, Heiko Strathmann, Brooks Paige, Dino Sejdinovic)....Pages 390-409
Learning Łukasiewicz Logic Fragments by Quadratic Programming (Francesco Giannini, Michelangelo Diligenti, Marco Gori, Marco Maggini)....Pages 410-426
Nyström Sketches (Daniel J. Perry, Braxton Osting, Ross T. Whitaker)....Pages 427-442
Front Matter ....Pages 443-443
Crossprop: Learning Representations by Stochastic Meta-Gradient Descent in Neural Networks (Vivek Veeriah, Shangtong Zhang, Richard S. Sutton)....Pages 445-459
Distributed Stochastic Optimization of Regularized Risk via Saddle-Point Problem (Shin Matsushima, Hyokun Yun, Xinhua Zhang, S. V. N. Vishwanathan)....Pages 460-476
Speeding up Hyper-parameter Optimization by Extrapolation of Learning Curves Using Previous Builds (Akshay Chandrashekaran, Ian R. Lane)....Pages 477-492
Thompson Sampling for Optimizing Stochastic Local Search (Tong Yu, Branislav Kveton, Ole J. Mengshoel)....Pages 493-510
Front Matter ....Pages 511-511
Comparative Study of Inference Methods for Bayesian Nonnegative Matrix Factorisation (Thomas Brouwer, Jes Frellsen, Pietro Lió)....Pages 513-529
Content-Based Social Recommendation with Poisson Matrix Factorization (Eliezer de Souza da Silva, Helge Langseth, Heri Ramampiaro)....Pages 530-546
C-SALT: Mining Class-Specific ALTerations in Boolean Matrix Factorization (Sibylle Hess, Katharina Morik)....Pages 547-563
Feature Extraction for Incomplete Data via Low-rank Tucker Decomposition (Qiquan Shi, Yiu-ming Cheung, Qibin Zhao)....Pages 564-581
Structurally Regularized Non-negative Tensor Factorization for Spatio-Temporal Pattern Discoveries (Koh Takeuchi, Yoshinobu Kawahara, Tomoharu Iwata)....Pages 582-598
Front Matter ....Pages 599-599
Attributed Graph Clustering with Unimodal Normalized Cut (Wei Ye, Linfei Zhou, Xin Sun, Claudia Plant, Christian Böhm)....Pages 601-616
K-Clique-Graphs for Dense Subgraph Discovery (Giannis Nikolentzos, Polykarpos Meladianos, Yannis Stavrakas, Michalis Vazirgiannis)....Pages 617-633
Learning and Scaling Directed Networks via Graph Embedding (Mikhail Drobyshevskiy, Anton Korshunov, Denis Turdakov)....Pages 634-650
Local Lanczos Spectral Approximation for Community Detection (Pan Shi, Kun He, David Bindel, John E. Hopcroft)....Pages 651-667
Regularizing Knowledge Graph Embeddings via Equivalence and Inversion Axioms (Pasquale Minervini, Luca Costabello, Emir Muñoz, Vít Nováček, Pierre-Yves Vandenbussche)....Pages 668-683
Survival Factorization on Diffusion Networks (Nicola Barbieri, Giuseppe Manco, Ettore Ritacco)....Pages 684-700
The Network-Untangling Problem: From Interactions to Activity Timelines (Polina Rozenshtein, Nikolaj Tatti, Aristides Gionis)....Pages 701-716
TransT: Type-Based Multiple Embedding Representations for Knowledge Graph Completion (Shiheng Ma, Jianhui Ding, Weijia Jia, Kun Wang, Minyi Guo)....Pages 717-733
Front Matter ....Pages 735-735
A Network Architecture for Multi-Multi-Instance Learning (Alessandro Tibo, Paolo Frasconi, Manfred Jaeger)....Pages 737-752
Con-S2V: A Generic Framework for Incorporating Extra-Sentential Context into Sen2Vec (Tanay Kumar Saha, Shafiq Joty, Mohammad Al Hasan)....Pages 753-769
Deep Over-sampling Framework for Classifying Imbalanced Data (Shin Ando, Chun Yuan Huang)....Pages 770-785
FCNN: Fourier Convolutional Neural Networks (Harry Pratt, Bryan Williams, Frans Coenen, Yalin Zheng)....Pages 786-798
Joint User Modeling Across Aligned Heterogeneous Sites Using Neural Networks (Xuezhi Cao, Yong Yu)....Pages 799-815
Sequence Generation with Target Attention (Yingce Xia, Fei Tian, Tao Qin, Nenghai Yu, Tie-Yan Liu)....Pages 816-831
Wikipedia Vandal Early Detection: From User Behavior to User Embedding (Shuhan Yuan, Panpan Zheng, Xintao Wu, Yang Xiang)....Pages 832-846
Back Matter ....Pages 847-852




نظرات کاربران