دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: سری: Woodhead Publishing Series in Electronic and Optical Materials ISBN (شابک) : 9780128238240 ناشر: Elsevier سال نشر: 2022 تعداد صفحات: 468 [470] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 10 Mb
در صورت تبدیل فایل کتاب Xenes: 2D Synthetic Materials Beyond Graphene به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب Xenes: مواد مصنوعی دوبعدی فراتر از گرافن نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Xenes: مواد مصنوعی 2 بعدی فراتر از گرافن شامل تمام اطلاعات مرتبط در مورد Xenes است که تاکنون گزارش شده است، با تمرکز بر مواد در حال ظهور و روندهای جدید. هدف اصلی این کتاب شامل توضیحات کامل هر نوع Xene توسط کارشناسان برجسته در این منطقه است. هر فصل اصول کلیدی، نظریه ها، روش ها، آزمایش ها و کاربردهای بالقوه را ارائه می دهد. این کتاب همچنین چالشهای کلیدی مواد دو بعدی مصنوعی مانند مشخصهسازی، مدلسازی، سنتز و استراتژیهای یکپارچهسازی را بررسی میکند. این کتاب جامع برای دانشمندان و مهندسان مواد، فیزیکدانان و شیمیدانان شاغل در دانشگاه و تحقیق و توسعه در صنعت مناسب است. کشف سیلیسن به سال 2012 برمی گردد. از آن زمان، Xen های دیگر متعاقبا با روش های مصنوعی ساخته شدند. نمونه کارها Xenes شامل عناصر شیمیایی مختلف جدول تناوبی است و از این رو شبکه های لانه زنبوری مرتبط دارای خواص الکترونیکی و نوری زیادی هستند که می توانند با موفقیت برای کاربردها مورد استفاده قرار گیرند. معرفی مهمترین Xenها، از جمله سیلیسن، ژرمانن، بوروفن، گالنن، فسفرن، و موارد دیگر. اصول، نظریه ها، آزمایش ها و کاربردهای مربوط به مرتبط ترین مواد مصنوعی 2 بعدی را ارائه می دهد.
Xenes: 2D Synthetic Materials Beyond Graphene includes all the relevant information about Xenes thus far reported, focusing on emerging materials and new trends. The book\'s primary goal is to include full descriptions of each Xene type by leading experts in the area. Each chapter will provide key principles, theories, methods, experiments and potential applications. The book also reviews the key challenges for synthetic 2D materials such as characterization, modeling, synthesis, and integration strategies. This comprehensive book is suitable for materials scientists and engineers, physicists and chemists working in academia and R&D in industry. The discovery of silicene dates back to 2012. Since then, other Xenes were subsequently created with synthetic methods. The portfolio of Xenes includes different chemical elements of the periodic table and hence the related honeycomb-like lattices show a wealth of electronic and optical properties that can be successfully exploited for applications. Introduces the most important Xenes, including silicene, germanene, borophene, gallenene, phosphorene, and more Provides the fundamental principles, theories, experiments and applications for the most relevant synthetic 2D materials Addresses techniques for the characterization, synthesis and integration of synthetic 2D materials
Cover Half Title Xenes: 2D Synthetic Materials Beyond Graphene Copyright Contents About the Editors List of contributors Preface Introduction Two-dimensional materials beyond graphene: the rise of the Xenes Borophene and gallenene Silicene, germanene, stanene, and plumbene Phosphorene, arsenene, antimonene, and bismuthene A brief overview of the Xenes from the periodic table Selenene and tellurene Xenes toward nanotechnologies Conclusions References 1. Silicene 1.1 Introduction 1.2 Historical background: the Schottky problem 1.3 Silicene: the concept 1.4 Exotic phases of silicene and their topological electronic properties—theory 1.5 Discovery of one-dimensional silicon nanoribbons 1.6 The birth of two-dimensional silicene 1.7 Hydrogenation of the canonical 3 3 3/4 3 4 silicene phase on A 1.8 Other allotropic phases of silicene on Ag(1 1 1) and multilayer 1.9 Reactivity and adsorption on silicene, silicene on other substrates, and silicene by wet chemistry 1.10 Exotic variants of silicene: penta-silicene nanoribbons and kagome silicene 1.10.1 Penta-silicene nanoribbons 1.10.2 Kagome silicene 1.11 Properties, applications, and perspectives 1.12 Conclusion Note References 2. Germanene 2.1 Introduction two-dimensional Dirac materials 2.2 Synthesis of germanene 2.2.1 Introduction 2.2.2 Synthesis of germanene 2.2.2.1 Germanene on Pt(1 1 1) 2.2.2.2 Germanene on Au(1 1 1) 2.2.2.3 Germanene on Ge2Pt 2.2.2.4 Germanene on Al(1 1 1) 2.2.2.5 Germanene on molybdenum disulfide (MoS2) 2.2.2.6 Germanene on Cu(1 1 1) 2.2.2.7 Germanene on hexagonal AIN/Ag(1 1 1) 2.2.2.8 Germanene on Sb(1 1 1) 2.2.2.9 Germanene on highly oriented pyrolytic graphite 2.2.2.10 Germanene on Ag(1 1 1) 2.3 Structural and electronic properties of germanene 2.4 Anomalous quantum Hall effect and quantum spin Hall effect 2.4.1 Anomalous quantum Hall effect 2.4.2 Quantum spin Hall effect 2.5 Bandgap opening in germanene 2.5.1 Electric-field-induced bandgap opening 2.5.2 Bandgap opening by coupling to a substrate and adsorption or or intercalation of atoms or molecules 2.6 Bilayer germanene and twisted bilayer germanene 2.7 Summary References 3. Stanene and Plumbene 3.1 Introduction: tin and stanene, lead and plumbene 3.2 The theoretical prediction of stanene and plumbene 3.3 Theoretical prediction for stanene to be a two dimensional topological insulator 3.3.1 Stanene as quantum spin Hall insulator described by Kane-Mele model 3.3.2 Decorated stanene as quantum spin Hall insulator described by Bernevig-Hughes-Zhang model 3.3.3 Modified stanene as quantum anomalous Hall insulator 3.3.4 Theoretical prediction for stanene to be a two-dimensional Ising superconductor 3.4 The synthesis and characterization of stanene 3.4.1 Epitaxial growth of stanene 3.4.2 Topological band inversion in ultraflat stanene 3.4.3 Two-dimensional Ising superconductivity in few layer stanene 3.5 The synthesis and characterization of plumbene 3.6 Perspectives on the applications of stanene and plumbene References 4. Borophene 4.1 Introduction 4.2 Theoretical aspects of borophene 4.3 Synthesis of borophene 4.3.1 Borophenes on Ag(111), (110), and (100) 4.3.2 Borophene on Cu(111) 4.3.3 Borophene on Al(111) 4.3.4 Borophene on Ir(111) 4.3.5 Liquid-phase exfoliation 4.3.6 Hydrogenated borophene (borophane) 4.4 Physical properties of borophene 4.4.1 Mechanical properties 4.4.2 Metallicity 4.4.3 Dirac cones and Dirac nodal lines 4.4.4 Superconductivity 4.4.5 Optical properties 4.5 Perspective References 5. Gallenene 5.1 Evidence of two-dimensionality in bulk gallium 5.2 Evidence of two-dimensionality in gallium nanostructures 5.3 Experimental discovery 5.4 Electronic properties 5.5 Thermal stability 5.6 How unique is gallenene? 5.7 Properties and applications of gallenene Acknowledgments References 6. Phosphorene 6.1 Introduction 6.2 Properties of two-dimensional black phosphorus 6.2.1 Crystal and band structure 6.2.2 Optical properties 6.2.3 Thermoelectric properties 6.3 Applications 6.3.1 Electronic devices 6.3.2 Optoelectronic devices 6.3.3 Bioapplications 6.4 Fabrication 6.4.1 Bulk crystals 6.4.2 Few-/single-layer Black phosphorus 6.4.2.1 Top-down 6.4.2.2 Bottom-up growth 6.4.3 Blue phosphorene 6.5 Functionalization 6.5.1 Surface functionalization 6.5.2 Bandgap engineering 6.5.3 Defects engineering 6.6 Oxidation and surface protection 6.6.1 Oxidation mechanism 6.6.2 Surface protection 6.6.2.1 Encapsulation 6.6.2.2 Covalent functionalization 6.6.2.3 Noncovalent functionalization 6.7 Conclusion and outlook Acknowledgments References 7. Arsenene and Antimonene 7.1 Introduction 7.2 Arsenic and antimony allotropes 7.2.1 Arsenic 7.2.2 Antimony 7.3 Two-dimensional arsenene and antimonene 7.3.1 Fundamentals 7.3.2 “Top-down” methods 7.3.3 “Bottom-up” methods 7.4 Doping of arsenene and antimonene 7.5 Applications and future prospects of arsenene and antimonene 7.6 Conclusion Acknowledgement References 8. Bismuthene 8.1 Introduction 8.2 Structure and properties of two-dimensional bismuth 8.2.1 Atomic structure 8.2.2 Band structure 8.2.3 Fundamental properties 8.2.3.1 Mechanical properties 8.2.3.2 Optical properties 8.2.3.3 Thermoelectric properties 8.2.3.4 Topological properties 8.3 Preparation of two-dimensional bismuth 8.3.1 Physical vapor deposition 8.3.2 Wet chemical methods 8.3.3 Exfoliation methods 8.4 Characterization of two-dimensional bismuth 8.4.1 Structure characterization 8.4.2 Morphology characterization 8.4.3 Electrical properties 8.5 Applications of two-dimensional bismuth 8.5.1 Field-effect transistors 8.5.2 Thermoelectrics 8.5.3 Photodetectors 8.5.4 Batteries 8.6 Summary References 9. Selenene and Tellurene 9.1 Introduction 9.2 Selenene 9.2.1 Synthesis methods 9.2.1.1 Biomolecule-assisted hydrothermal synthesis 9.2.1.2 Porous template-assisted method 9.2.1.3 Physical vapor deposition 9.2.2 Physical properties 9.2.2.1 Optical properties 9.2.2.2 Thermal properties and stability 9.2.2.3 Electrical properties 9.2.3 Applications 9.2.3.1 Field-effect transistors 9.2.3.2 Photoelectric devices 9.2.3.3 Synaptic transistors 9.3 Tellurene 9.3.1 Synthesis methods 9.3.1.1 Pulsed laser deposition 9.3.1.2 Physical vapor deposition 9.3.1.3 Magnetron sputtering 9.3.1.4 Liquid-phase exfoliation 9.3.1.5 Thermal evaporation 9.3.1.6 Solution-based growth 9.3.1.7 Encapsulation in nanotubes 9.3.2 Physical properties 9.3.2.1 Electrical properties 9.3.2.2 Topological properties 9.3.2.3 Optical properties 9.3.3 Electronic applications 9.3.3.1 Field-effect transistors 9.3.3.2 Thermoelectric devices 9.4 Conclusions References 10. Technical evolution for the identification of Xenes: from microscopy to spectroscopy 10.1 Introduction 10.2 Working principles of scanning tunneling microscopy and angular-resolved photoemission spectroscopy 10.2.1 Scanning tunneling microscopy 10.2.2 Angular-resolved photoemission spectroscopy 10.3 Applications of scanning tunneling microscopy and angular-resolved photoemission spectroscopy in Xenes 10.3.1 Silicene and germanene 10.3.1.1 Topographic and electronic structure of silicene and germanene 10.3.1.2 Quasiparticle interference in silicene 10.3.2 Borophene 10.3.3 Stanene 10.3.4 Bismuthene 10.3.5 Phosphorene 10.3.6 Antimonene, arsenene, and tellurene 10.4 Emerging techniques used in Xenes 10.4.1 Raman spectroscopy studies on Xenes 10.4.2 Atomic force microscopy 10.4.3 Transmission electron microscopy 10.4.4 X-ray photoemission spectroscopy 10.4.5 Spin-resolved angular-resolved photoemission spectroscopy 10.4.6 Auger electron spectroscopy and low-energy electron diffraction and reflection high-energy electron diffraction References 11. Chemical methods for Xenes 11.1 Introduction 11.2 Surface functionalization metrology 11.3 Analogy of Si(111) and Ge(111) surface functionalization 11.4 Chemical treatments and reactivity of Si, Ge, Sn Xenes 11.5 Topotactic transformations of Zintl phases in the synthesis of functionalized Xenes 11.5.1 Functionalized silicene analogs from topotactic transformations of CaSi2 11.5.2 Functionalized germanene from topotactic transformations of CaGe2 11.5.3 Functionalized Sn Xenes from the topotactic transformations of Sn-containing Zintl phases 11.5.4 Organic-functionalized Xenes via topotactic functionalization of Zintl phases with haloalkanes 11.6 Ligand substitution reactions of functionalized Si and Ge Xenes 11.6.1 SiH to SiR via hydrosilylation 11.6.2 GeH to GeR via hydrogermylation 11.6.3 SiH to SiNR via amination 11.6.4 SiH to SiH4Ph via Grignard chemistry 11.7 Covalent modification of other Xenes 11.8 Functionalization-induced changes in thermal and electronic properties of group 14 Xenes 11.8.1 Functionalization-induced changes in electronic structure 11.8.2 Functionalization-induced changes in carrier mobilities 11.8.3 Signatures of amorphization and functionalization induced changes in conductivity and thermal stability 11.8.4 Functionalization-induced changes in water absorption 11.9 Conclusion References 12. Topological physics of Xenes 12.1 Two-dimensional topological insulators 12.1.1 Two typical models for quantum spin Hall insulators 12.1.2 Topological Z2 invariant 12.1.3 Quantum spin Hall insulators in Xenes 12.2 Quantum anomalous Hall effect in Xene 12.2.1 Introduction to the quantum anomalous Hall effect 12.2.2 Theoretical models of quantum anomalous Hall states in Xene 12.2.3 Realization of the quantum anomalous Hall states in Xenes 12.3 Topological superconductivity and Ising superconductivity 12.3.1 General introduction 12.3.2 Type-II Ising superconductivity 12.3.3 Topological superconductivity 12.3.4 Other research progresses 12.4 Thermoelectric properties in Xenes 12.5 Summary and outlook References 13. Optical properties of Xenes Abbreviations 13.1 Introduction 13.2 Theoretical methods 13.2.1 Reflectance, transmittance, and absorbance 13.2.2 Optical conductivity and the superlattice method 13.2.3 Ab initio approaches: from single particles to quasiparticles 13.2.3.1 Ground-state properties: the density functional theory 13.2.3.2 Quasiparticles: the GW approximation 13.2.3.3 Excitonic effects: the Bethe Salpeter equation 13.3 Results 13.3.1 Freestanding Xenes 13.3.1.1 Graphene 13.3.1.2 Silicene 13.3.1.3 Germanene 13.3.1.4 Stanene 13.3.1.5 Plumbene 13.3.1.6 Universal infrared absorbance of Group-IV crystals 13.3.1.7 Silicongraphene 13.3.1.8 Spin orbit corrections 13.3.2 Hydrogenated Xenes: the Xanes 13.3.3 Beyond the freestanding case: substrate effects 13.3.3.1 Silicene on sapphire 13.3.3.2 Silicene on Ag surfaces 13.4 Summary and conclusions Acknowledgments References 14. Two-dimensional magnetism in Xenes 14.1 Introduction 14.2 Theoretical predictions of magnetism in Xenes 14.3 Intrinsic magnetism in Xene multilayer three dimensional compounds 14.4 Two-dimensional ferromagnetism in silicene materials 14.5 Two-dimensional ferromagnetism in germanene materials 14.6 Electron transport in two-dimensional magnetic Xene compounds 14.7 Extension of two-dimensional ferromagnetism to graphene 14.8 Conclusion Acknowledgments References 15. Xene heterostructures 15.1 Introduction 15.2 Xene homostructures 15.3 Xene heterostructures 15.4 Challenges, bottlenecks, potential and perspectives Acknowledgement References 16. Integration paths for Xenes 16.1 Introduction 16.1.1 Major players from a device perspective 16.1.2 Growth techniques and functionalization of Xenes 16.1.3 Application of Xene devices 16.1.4 Challenges in device fabrication 16.2 Review of existing electronic devices 16.2.1 Group 14 devices 16.2.1.1 Silicene: silicene encapsulated delamination with native electrodes technique 16.2.1.2 Seamless silicene encapsulated delamination with native electrodes method 16.2.1.3 Universal Xene encapsulation, decoupling and operation approach 16.2.1.4 Heterostructure devices 16.2.1.5 Germanene field-effect transistors 16.2.2 Group 15 (pnictogens) devices 16.2.2.1 Phosphorene and black phosphorus devices Black phosphorus/phosphorene 16.2.2.2 Arsenene, antimonene, and bismuthene devices 16.2.3 Group 16 (chalcogens) devices 16.2.3.1 Selenene and tellurene field-effect transistors 16.3 Current and future applications of Xenes 16.3.1 Photonics devices 16.3.2 Biomedical devices 16.3.3 Topology-based electronic devices 16.3.4 Memory devices 16.3.5 Xene-based junctions 16.4 Perspectives on integration of Xenes with silicon 16.5 Concluding remarks References Further reading Index Cover back