دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: بیوفیزیک ویرایش: نویسندگان: Len Pismen سری: Series in Computational Biophysics ISBN (شابک) : 1138591718, 9781138591714 ناشر: CRC Press سال نشر: 2020 تعداد صفحات: 250 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 18 مگابایت
در صورت تبدیل فایل کتاب Working with Dynamical Systems: A Toolbox for Scientists and Engineers به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب کار با سیستم های دینامیکی: جعبه ای برای دانشمندان و مهندسان نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
This book provides working tools for the study and design of nonlinear dynamical systems applicable in physics and engineering. It offers a broad-based introduction to this challenging area of study, taking an applications-oriented approach that emphasizes qualitative analysis and approximations rather than formal mathematics or simulation. The author, an internationally recognized authority in the field, makes extensive use of examples and includes executable Mathematica notebooks that may be used to generate new examples as hands-on exercises. The coverage includes discussion of mechanical models, chemical and ecological interactions, nonlinear oscillations and chaos, forcing and synchronization, spatial patterns and waves.
Key Features:
· Written for a broad audience, avoiding dependence on mathematical formulations in favor of qualitative, constructive treatment.
· Extensive use of physical and engineering applications.
· Incorporates Mathematica notebooks for simulations and hands-on self-study.
· Provides a gentle but rigorous introduction to real-world nonlinear problems.
· Features a final chapter dedicated to applications of dynamical systems to spatial patterns.
The book is aimed at student and researchers in applied mathematics and mathematical modelling of physical and engineering problems. It teaches to see common features in systems of different origins, and to apply common methods of study without losing sight of complications and uncertainties related to their physical origin.
Cover Half Title Title Page Copyright Page Dedication Table of Contents Preface 1 Whence Dynamical Systems 1.1 Classical Mechanics 1.1.1 Conservative Equations of Motion 1.1.2 Systems with One Degree of Freedom 1.1.3 Symmetries and Conservation Laws 1.1.4 Interacting Particles 1.1.5 Dissipative Motion 1.2 Chemical Kinetics 1.2.1 Mass Action 1.2.2 Adsorption and Catalysis 1.2.3 Autocatalysis and Self-Inhibition 1.2.4 Thermal Effects 1.3 Biological Models 1.3.1 Population Dynamics 1.3.2 Epidemiological Models 1.3.3 Neural and Genetic Networks 1.4 Electric Currents 1.4.1 Electric Circuits 1.4.2 Electrochemical Reactions 1.4.3 Membrane Transport 1.5 Spatially Extended Systems 1.5.1 From Time to Coordinate Dependence 1.5.2 Fourier Decomposition 1.6 Continuous vs. Discrete 1.6.1 Iterative Systems 1.6.2 From Continuous to Discrete 1.6.3 Poincaré Maps 2 Local Bifurcations 2.1 Bifurcation of Stationary States 2.1.1 Branches of Stationary States 2.1.2 Bifurcation Expansion 2.1.3 Fold and Transcritical Bifurcations 2.1.4 Cusp Singularity 2.1.5 Higher Singularities 2.2 Stability and Slow Dynamics 2.2.1 Linear Stability Analysis 2.2.2 Stable and Unstable Manifolds 2.2.3 Exchange of Stability 2.2.4 Amplitude Equations 2.3 Bifurcations of Periodic Orbits 2.3.1 Hopf Bifurcation 2.3.2 Derivation of the Amplitude Equation 2.3.3 Instabilities of Periodic Orbits 2.4 Example: Exothermic Reaction 2.4.1 Bifurcation of Stationary States 2.4.2 Hopf Bifurcation 2.4.3 Branches of Periodic Orbits 2.5 Example: Population Dynamics 2.5.1 Prey–Predator Models 2.5.2 Stability and Bifurcations 2.5.3 Periodic Orbits 3 Global Bifurcations 3.1 Topology of Bifurcations 3.1.1 More Ways to Create and Break Periodic Orbits 3.1.2 Bifurcations in a System with Three Stationary States 3.2 Global Bifurcations in the Exothermic Reaction 3.2.1 Basin Boundaries 3.2.2 Saddle-Loop Bifurcations 3.2.3 Sniper Bifurcation 3.3 Bifurcation at Double-Zero Eigenvalue 3.3.1 Locating a Double Zero 3.3.2 Quadratic Normal Form 3.3.3 Expansion in the Vicinity of Cusp Singularity 3.4 Almost Hamiltonian Dynamics 3.4.1 Weak Dissipation 3.4.2 Hopf and Saddle-Loop Bifurcations 3.4.3 Bifurcation Diagrams 3.4.4 Basin Boundaries 3.5 Systems with Separated Time Scales 3.5.1 Fast and Slow Variables 3.5.2 Van der Pol Oscillator 3.5.3 FitzHugh–Nagumo Equation 3.5.4 Canards 3.6 Venturing to Higher Dimensions 3.6.1 Dynamics Near Triple-Zero Eigenvalue 3.6.2 Double Hopf Bifurcation 3.6.3 Blue Sky Catastrophe 4 Chaotic, Forced, and Coupled Oscillators 4.1 Approaches to Hamiltonian Chaos 4.1.1 Hiding in Plain Sight 4.1.2 Resonances and Small Divisors 4.1.3 Example: Hénon-Heiles Model 4.1.4 Quantitative Measures of Chaos 4.2 Approaches to Dissipative Chaos 4.2.1 Distilling Turbulence into Simple Models 4.2.2 Chaotic Attractors 4.2.3 Period-Doubling Cascade 4.2.4 Strange, Chaotic, or Both? 4.3 Chaos Near a Homoclinic 4.3.1 Shilnikov\'s Snake 4.3.2 Complexity in Chaotic Models 4.3.3 Lorenz Model 4.4 Weakly Forced Oscillators 4.4.1 Phase Perturbations 4.4.2 Forced Harmonic Oscillator 4.4.3 Weakly Forced Hamiltonian System 4.5 Effects of Strong Forcing 4.5.1 Universal and Standard Mappings 4.5.2 Forced Dissipative Oscillators 4.5.3 Forced Relaxation Oscillator 4.6 Coupled Oscillators 4.6.1 Phase Dynamics 4.6.2 Coupled Pendulums 4.6.3 Coupled Relaxation Oscillators 4.6.4 Synchronization in Large Ensembles 5 Dynamical Systems in Space 5.1 Space-Dependent Equilibria 5.1.1 Basic Equations 5.1.2 Stationary Solution in One Dimension 5.1.3 Systems with Mass Conservation 5.2 Propagating Fronts 5.2.1 Advance into a Metastable State 5.2.2 Propagation into an Unstable State 5.2.3 Pushed Fronts 5.3 Separated Time and Length Scales 5.3.1 Two-Component Reaction–Diffusion System 5.3.2 Stationary and Mobile Fronts 5.3.3 Stationary and Mobile Bands 5.3.4 Wave Trains 5.4 Symmetry-Breaking Bifurcations 5.4.1 Amplitude Equations 5.4.2 Bifurcation Expansion 5.4.3 Interacting Modes 5.4.4 Plane Waves and their Stability 5.5 Resonant Interactions 5.5.1 Triplet Resonance 5.5.2 Stripes–Hexagons Competition 5.5.3 Standing Waves 5.6 Nonuniform Patterns 5.6.1 Propagation of a Stationary Pattern 5.6.2 Self-Induced Pinning 5.6.3 Propagating Wave Pattern 5.6.4 Nonuniform Wave Patterns Bibliography Online Files Illustration Credits