ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Wireless Sensor Networks: Energy Harvesting and Management for Research and Industry (Signals and Communication Technology)

دانلود کتاب شبکه‌های حسگر بی‌سیم: برداشت و مدیریت انرژی برای تحقیقات و صنعت (سیگنال‌ها و فناوری ارتباطات)

Wireless Sensor Networks: Energy Harvesting and Management for Research and Industry (Signals and Communication Technology)

مشخصات کتاب

Wireless Sensor Networks: Energy Harvesting and Management for Research and Industry (Signals and Communication Technology)

ویرایش:  
نویسندگان:   
سری:  
ISBN (شابک) : 3030296989, 9783030296988 
ناشر: Springer 
سال نشر: 2020 
تعداد صفحات: 682 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 20 مگابایت 

قیمت کتاب (تومان) : 40,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 4


در صورت تبدیل فایل کتاب Wireless Sensor Networks: Energy Harvesting and Management for Research and Industry (Signals and Communication Technology) به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب شبکه‌های حسگر بی‌سیم: برداشت و مدیریت انرژی برای تحقیقات و صنعت (سیگنال‌ها و فناوری ارتباطات) نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی درمورد کتاب به خارجی



فهرست مطالب

Preface
Contents
About the Author
List of Acronyms
List of Figures
List of Tables
Concepts and Energy Harvesting
1 Wireless Sensor Networks Essentials
	1.1 Sensing, Senses, Sensors
	1.2 Toward Wireless Sensor Networks
	1.3 Mobile Ad Hoc Networks (MANETs)
	1.4 Wireless Mesh Networks (WMNs)
	1.5 Closer Perspective to WSNs
		1.5.1 Wireless Sensor Nodes
		1.5.2 Architecture of WSNs
	1.6 Types of WSNs
		1.6.1 Terrestrial WSNs
		1.6.2 Underground WSNs
		1.6.3 Underwater Acoustic Sensor Networks (UASNs)
		1.6.4 Multimedia WSNs
		1.6.5 Mobile WSNs
	1.7 Performance Metrics of WSNs
	1.8 WSNs Standards
	1.9 Protocol Stack of WSNs
		1.9.1 Physical Layer
		1.9.2 Data Link Layer
		1.9.3 Network Layer
		1.9.4 Transport Layer
		1.9.5 Application Layer
		1.9.6 Cross-Layer Protocols for WSNs
	1.10 Conclusion for Energetic Trip
	1.11 Exercises
	References
2 Energy Harvesting in WSNs
	2.1 Energy Constraints
	2.2 Energy Harvesting Concepts and Components
		2.2.1 Energy Harvesting Architectures
		2.2.2 Power and Energy Differentiated
		2.2.3 Energy Harvesting Versus Battery-Operated Systems
		2.2.4 Storage Technologies
			2.2.4.1 Batteries
			2.2.4.2 Super-Capacitors
		2.2.5 Harvesting Theory
		2.2.6 Conditions for Energy-Neutral Operation
		2.2.7 Characteristics and Classifications of the Harvestable Energy Sources
		2.2.8 Multisupply and Autonomous Energy Harvesting
	2.3 Energy Harvesting Mechanisms
		2.3.1 Photovoltaic Energy Harvesting
		2.3.2 Energy Harvesting from Motion and Vibration
			2.3.2.1 Electrostatic Transducers
			2.3.2.2 Piezoelectric Transducers
			2.3.2.3 Electromagnetic Transducers
			2.3.2.4 Mechanisms for Converting Motion and Vibration to Electricity Compared
		2.3.3 Energy Harvesting from Temperature Differences
			2.3.3.1 Thermoelectric Energy Harvesting
			2.3.3.2 Pyroelectric Energy Harvesting
		2.3.4 Wind Energy Harvesting
		2.3.5 Wireless Energy Harvesting
			2.3.5.1 RF Energy Harvesting
			2.3.5.2 Inductive Coupling Energy Harvesting
		2.3.6 Biochemical Energy Harvesting
			2.3.6.1 Physical Energy Sources
			2.3.6.2 Thermal Gradient
			2.3.6.3 Airflow of Respiration
			2.3.6.4 Chemical Energy Sources
		2.3.7 Acoustic Energy Harvesting
		2.3.8 Hybrid Energy Harvesting
			2.3.8.1 Hybrid Energy Harvesting for Indoor WSNs
			2.3.8.2 Limitations of Single-Source Energy Harvesting for Indoor WSNs
			2.3.8.3 Hybrid Energy Harvesting Methodologies for Indoor WSNs
	2.4 MEMS for Energy Harvesters Fabrication
	2.5 Conclusion for Enlightenment
	2.6 Exercises
	References
Energy Management Perspectives
3 Energy Management Techniques for WSNs
	3.1 Energy Conservation Approaches
		3.1.1 Duty-Cycling Techniques
		3.1.2 Data-Driven Techniques
		3.1.3 Mobility-Based Techniques
	3.2 Conclusion for More on Energy Management
	3.3 Exercises
	References
4 Energy Management Techniques for WSNs (1): Duty-Cycling Approach
	4.1 Duty-Cycling Approach Taxonomy
		4.1.1 Topology Control Protocols
			4.1.1.1 Location-Driven Protocols
				Geographical Adaptive Fidelity (GAF)
				Geographic Random Forwarding (GeRaF)
			4.1.1.2 Connectivity-Driven Protocols
				Span
				Adaptive Self-configuring Sensor Network Topology (ASCENT)
				Naps
				Uncoordinated Power Saving Mechanisms with Latency Considerations
				Degree-Dependent Energy Management Algorithm (DDEMA)
			4.1.1.3 Appraisal of Topology Control Protocols
		4.1.2 Power Management Protocols
			4.1.2.1 Sleep/Wakeup Protocols
				On-Demand Schemes
				Sparse Topology and Energy Management (STEM)
				Pipelined Tone Wakeup (PTW)
				Scheduled Rendezvous Schemes
				Wakeup Scheduling Patterns in WSNs
				Optimal Wakeup Scheduling of Data Gathering Trees for WSNs
				Asynchronous Schemes
				Asynchronous Wakeup Protocol (AWP) for Ad Hoc Networks
				Random Asynchronous Wakeup (RAW) Protocol for Sensor Networks
				Appraisal of Sleep/Wakeup Protocols
			4.1.2.2 MAC Protocols with Low Duty-Cycle
				TDMA-Based MAC Protocols
				Traffic-Adaptive Medium Access Protocol (TRAMA)
				A Lightweight Medium Access Control (L-MAC) Protocol for WSNs
				Flow-Aware Medium Access (FLAMA)
				Contention-Based MAC Protocols
				Medium Access Control with Coordinated Adaptive Sleeping for WSNs (S-MAC)
				An Adaptive Energy-Efficient MAC Protocol for WSNs (T-MAC)
				An Adaptive Energy-Efficient and Low-Latency MAC for Data Gathering in WSNs (D-MAC)
				Versatile Low-Power Media Access for Sensor Networks (B-MAC)
				Hybrid MAC Protocols
				A Hybrid MAC for WSNs (Z-MAC)
				Appraisal of MAC Protocols with Low Duty-Cycle
	4.2 Conclusion for Longer Duty-Cycling
	4.3 Exercises
	References
5 Energy Management Techniques for WSNs (2): Data-Driven Approach
	5.1 Data-Driven Approach Taxonomy
		5.1.1 Data Reduction Protocols
			5.1.1.1 In-Network Processing Protocols
				Tree-Based Data Aggregation Protocols
				Cluster-Based Data Aggregation Protocolsin-Network Processing Protocols
				Hybrid Tree/Cluster-Based Data Aggregation Protocols
				Multipath-Based Data Aggregation Protocols
				Hybrid Tree/Multipath-Based Data Aggregation Protocols
				Appraisal of In-Network Processing Protocols
			5.1.1.2 Data Compression Protocols
				An Efficient Lossless Compression Algorithm for Tiny Nodes of Monitoring WSNs (LEC)
			5.1.1.3 Data Prediction Protocols
				Stochastic Approaches
				Approximate Data Collection in Sensor Networks Using Probabilistic Models (Ken)
				Time-Series Forecasting Approaches
				Time-Series Forecasting for Approximate Query Answering in Sensor Networks (PAQ)
				Adaptive Model Selection for Time-Series Prediction in WSNs (AMS)
				Algorithmic Approaches
				Energy-Efficient Data Collection in Distributed Sensor Environments (EEDC)
				Buddy
				Appraisal of Data Prediction Protocols
		5.1.2 Energy-Efficient Data Acquisition
			5.1.2.1 Adaptive Sampling
				Adaptive Sampling for Energy Conservation in WSNs for Snow Monitoring Applications
				Event-Sensitive Autonomous Adaptive Sensing and Low-Cost Monitoring in Networked Sensing Systems (e-Sampling)
			5.1.2.2 Multi-level and Cooperative Sampling
				Multi-Camera Coordination and Control in Surveillance Systems
				Multiscale Approach for Structural Health Monitoring
			5.1.2.3 Model-Based Active Sampling
				Model-Driven Data Acquisition in Sensor Networks (BBQ)
				Derivative-Based Prediction (DBP)
			5.1.2.4 Appraisal of Energy-Efficient Data Acquisition
	5.2 Conclusion for Well-Managed Lifestyle
	5.3 Exercises
	References
6 Energy Management Techniques for WSNs (3): Mobility-Based Approach
	6.1 Mobility in WSNs
		6.1.1 Architecture of WSNs with Mobile Elements
		6.1.2 Role of Mobile Elements in WSNs
	6.2 Mobility-Based Approach Taxonomy
		6.2.1 Mobile Sink Protocols
			6.2.1.1 Uncontrolled Sink Mobility Protocols
				Exploiting Sink Mobility for Maximizing Sensor Networks Lifetime
				Energy-Aware Routing to Maximize Lifetime in WSNs with Mobile Sink
			6.2.1.2 Controlled Sink Mobility Protocols
				Controlled Sink Mobility for Prolonging WSNs Lifetime (GMRE)
				Maximizing the Lifetime of WSNs with Mobile Sink in Delay-Tolerant Applications (DT-MSM)
		6.2.2 Mobile Relay Protocols
			6.2.2.1 Exploiting Mobility for Energy-Efficient Data Collection in WSNs (MULEs)
			6.2.2.2 Extending the Lifetime of WSNs Through Mobile Relays
	6.3 Conclusion for Controlled Mobility
	6.4 Exercises
	References
Harvesting and Management Projects and Testbeds
7 Energy Harvesting Projects for WSNs
	7.1 Necessities-Driven Projects
	7.2 Energy Harvesting Projects
		7.2.1 ZebraNet: Energy-Efficient Computing for Wildlife Tracking
			7.2.1.1 Hardware Design
				The Microcontroller
				Peripheral Devices
				Radio
				Off-Chip Memory
				Sensing Devices
			7.2.1.2 ZebraNet Targets
			7.2.1.3 Energy Concerns
				System-Level Energy Management
				Power Supplies
				Solar Cells and Battery
				Solar Cells
				Battery
			7.2.1.4 System Testing and Evaluation
				GPS Accuracy
				Radio Range
				Power Supplies
			7.2.1.5 Deployment Gained Know-How
		7.2.2 Prometheus for Perpetual Environmentally Powered Sensor Networks
			7.2.2.1 Design and Analysis
				Environmental Energy Source
				Wireless Sensor Node
				Primary Buffer
				Secondary Buffer
			7.2.2.2 Implementation
				Hardware Selection
				Telos Wireless Sensor Node
				Sensing and Control
				Charging Circuitry
				Driver and Software
			7.2.2.3 Outcomes
		7.2.3 Solar Biscuit: A Batteryless Wireless Sensor Network System for Environmental Monitoring Applications
			7.2.3.1 Energy Requirements of WSNs for Environmental Monitoring Applications
			7.2.3.2 Solar Biscuit Design
				Conceptual Design
				Communication Protocol
				Timing Sequence
				Ordinary Mode
				Emergency Mode
				Implementation and Performance Evaluation
				Hardware Implementation
				Performance Evaluation
		7.2.4 Heliomote for Solar Energy Harvesting in Wireless Embedded Systems
			7.2.4.1 Heliomote Design Basics and Modules
				Solar Cells
				Energy Storage Technologies
				Harvesting Circuit Design
				Energy Measurement
			7.2.4.2 Harvesting-Aware Power Management
			7.2.4.3 Design Choices and Implementation
				Hardware Considerations
				Software Interface
			7.2.4.4 Performance Evaluation and Outcomes
		7.2.5 Everlast: Long-Life, Super-Capacitor-Operated Wireless Sensor Node
			7.2.5.1 Everlast Motivations
			7.2.5.2 Design Considerations
			7.2.5.3 Everlast Components
				PFM Regulator
				PFM Regulator Design
				PFM Regulator Test
				PFM Controller
				WSN Circuitry
			7.2.5.4 Experimental Results
				Charging the Super-Capacitor
				Tracking the Solar Cell at MPP
				Running Continuously for 24 h a Day
			7.2.5.5 Everlast Outcomes
		7.2.6 AmbiMax: Autonomous Energy Harvesting Platform for Multisupply Wireless Sensor Nodes
			7.2.6.1 Design Principles and Implementation
				Energy Harvesting Subsystem
				Principles of Operation
				Energy Harvesting Subsystem Implementation
				Reservoir Capacitor Array
				Control and Charger
			7.2.6.2 Experimentation Outcome
		7.2.7 Sunflower: Low-Power, Energy Harvesting System with Custom Multichannel Communication Interface
			7.2.7.1 System Components and Design Objectives
				Overview
				Communication Interface
				Power Regulation Subsystem
			7.2.7.2 Power-Adaptive Design
				Microcontroller Power Adaptation
				System-Level Power Adaptation
			7.2.7.3 Sunflower Potential and Forecast
				Energy Scavenging Subsystems Compared
				Remote Charging via Infrared Laser
				Future Betterments
		7.2.8 Micro-Solar Power Sensor Networks for Forest Watersheds
			7.2.8.1 Solar Panels
				Macro-solar Panels Versus Micro-solar Panels
			7.2.8.2 Network and Node Design
				Network Architecture
				Engineering the Node
				Micro-Power Subsystem
			7.2.8.3 Micro-Solar Panels Design Considerations and Implementation
				Energy Storage
				Solar Panel
				Input Regulator
				Output Regulator
			7.2.8.4 Evaluating the Design
				A Sensor Network in an Urban Neighborhood
				A Sensor Network in a Forest Watershed
			7.2.8.5 Gained Experience
		7.2.9 Energy Harvesting from Hybrid Indoor Ambient Light and Thermal Energy Sources
			7.2.9.1 Characterization of Indoor Energy Sources
				Indoor Solar Energy Harvesting System
				Thermal Energy Harvesting System
			7.2.9.2 Hybrid Energy Harvesting from Solar and Thermal Energy Sources
				Characteristics of Solar Panel and Thermal Energy Harvester Connected in Parallel
				Design and Implementation of Ultra-Low Power Management Circuit
			7.2.9.3 Experimentation Outcomes
				Performance of Parallel HEH Configuration
				Power Conversion Efficiency of the HEH System
				Concluding Recap
	7.3 Conclusion for Radiance
	7.4 Exercises
	References
8 Energy Management Projects for WSNs
	8.1 Energy Management Projects
	8.2 Evolution and Sustainability of a Wildlife Monitoring Sensor Network
		8.2.1 Initial System Design
			8.2.1.1 Sensing
				Environmental Monitoring
				Badger Monitoring
			8.2.1.2 Data Collection
				Compression and Local Storage
				Routing
				uIP
				MAC Layer
		8.2.2 Evolution Stage 1: Improving Sensing and Data Collection
			8.2.2.1 Adaptive Sensing
				Simulation-Based Evaluation
				Deployment-Based Evaluation
			8.2.2.2 Delay-Tolerant Data Collection
				Data Priorities
				Node Priorities
				Priority and Mobility Aware Routing
				Evaluation
		8.2.3 Evolution Stage 2: Hardware Improvements
			8.2.3.1 Designing a New Node
			8.2.3.2 Duty-Cycling Revisited
			8.2.3.3 Data Collection Revisited
		8.2.4 Network Maintenance Costs
		8.2.5 Gained Experience
	8.3 Conclusion for Brightness
	8.4 Exercises
	References
9 WSNs Energy Testbeds
	9.1 Functionalities
	9.2 Typical WSNs Energy Testbed
		9.2.1 PowerBench: A Scalable Testbed Infrastructure for Benchmarking Power Consumption
			9.2.1.1 PowerBench Design
			9.2.1.2 Experimentation and Outcomes
	9.3 Conclusion for Brilliance
	9.4 Exercises
	References
Ignition
10 Last Flare
Index
Index of Abbreviations and Acronyms




نظرات کاربران