دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Hossam Mahmoud Ahmad Fahmy
سری:
ISBN (شابک) : 3030296989, 9783030296988
ناشر: Springer
سال نشر: 2020
تعداد صفحات: 682
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 20 مگابایت
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Wireless Sensor Networks: Energy Harvesting and Management for Research and Industry (Signals and Communication Technology) به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب شبکههای حسگر بیسیم: برداشت و مدیریت انرژی برای تحقیقات و صنعت (سیگنالها و فناوری ارتباطات) نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Preface Contents About the Author List of Acronyms List of Figures List of Tables Concepts and Energy Harvesting 1 Wireless Sensor Networks Essentials 1.1 Sensing, Senses, Sensors 1.2 Toward Wireless Sensor Networks 1.3 Mobile Ad Hoc Networks (MANETs) 1.4 Wireless Mesh Networks (WMNs) 1.5 Closer Perspective to WSNs 1.5.1 Wireless Sensor Nodes 1.5.2 Architecture of WSNs 1.6 Types of WSNs 1.6.1 Terrestrial WSNs 1.6.2 Underground WSNs 1.6.3 Underwater Acoustic Sensor Networks (UASNs) 1.6.4 Multimedia WSNs 1.6.5 Mobile WSNs 1.7 Performance Metrics of WSNs 1.8 WSNs Standards 1.9 Protocol Stack of WSNs 1.9.1 Physical Layer 1.9.2 Data Link Layer 1.9.3 Network Layer 1.9.4 Transport Layer 1.9.5 Application Layer 1.9.6 Cross-Layer Protocols for WSNs 1.10 Conclusion for Energetic Trip 1.11 Exercises References 2 Energy Harvesting in WSNs 2.1 Energy Constraints 2.2 Energy Harvesting Concepts and Components 2.2.1 Energy Harvesting Architectures 2.2.2 Power and Energy Differentiated 2.2.3 Energy Harvesting Versus Battery-Operated Systems 2.2.4 Storage Technologies 2.2.4.1 Batteries 2.2.4.2 Super-Capacitors 2.2.5 Harvesting Theory 2.2.6 Conditions for Energy-Neutral Operation 2.2.7 Characteristics and Classifications of the Harvestable Energy Sources 2.2.8 Multisupply and Autonomous Energy Harvesting 2.3 Energy Harvesting Mechanisms 2.3.1 Photovoltaic Energy Harvesting 2.3.2 Energy Harvesting from Motion and Vibration 2.3.2.1 Electrostatic Transducers 2.3.2.2 Piezoelectric Transducers 2.3.2.3 Electromagnetic Transducers 2.3.2.4 Mechanisms for Converting Motion and Vibration to Electricity Compared 2.3.3 Energy Harvesting from Temperature Differences 2.3.3.1 Thermoelectric Energy Harvesting 2.3.3.2 Pyroelectric Energy Harvesting 2.3.4 Wind Energy Harvesting 2.3.5 Wireless Energy Harvesting 2.3.5.1 RF Energy Harvesting 2.3.5.2 Inductive Coupling Energy Harvesting 2.3.6 Biochemical Energy Harvesting 2.3.6.1 Physical Energy Sources 2.3.6.2 Thermal Gradient 2.3.6.3 Airflow of Respiration 2.3.6.4 Chemical Energy Sources 2.3.7 Acoustic Energy Harvesting 2.3.8 Hybrid Energy Harvesting 2.3.8.1 Hybrid Energy Harvesting for Indoor WSNs 2.3.8.2 Limitations of Single-Source Energy Harvesting for Indoor WSNs 2.3.8.3 Hybrid Energy Harvesting Methodologies for Indoor WSNs 2.4 MEMS for Energy Harvesters Fabrication 2.5 Conclusion for Enlightenment 2.6 Exercises References Energy Management Perspectives 3 Energy Management Techniques for WSNs 3.1 Energy Conservation Approaches 3.1.1 Duty-Cycling Techniques 3.1.2 Data-Driven Techniques 3.1.3 Mobility-Based Techniques 3.2 Conclusion for More on Energy Management 3.3 Exercises References 4 Energy Management Techniques for WSNs (1): Duty-Cycling Approach 4.1 Duty-Cycling Approach Taxonomy 4.1.1 Topology Control Protocols 4.1.1.1 Location-Driven Protocols Geographical Adaptive Fidelity (GAF) Geographic Random Forwarding (GeRaF) 4.1.1.2 Connectivity-Driven Protocols Span Adaptive Self-configuring Sensor Network Topology (ASCENT) Naps Uncoordinated Power Saving Mechanisms with Latency Considerations Degree-Dependent Energy Management Algorithm (DDEMA) 4.1.1.3 Appraisal of Topology Control Protocols 4.1.2 Power Management Protocols 4.1.2.1 Sleep/Wakeup Protocols On-Demand Schemes Sparse Topology and Energy Management (STEM) Pipelined Tone Wakeup (PTW) Scheduled Rendezvous Schemes Wakeup Scheduling Patterns in WSNs Optimal Wakeup Scheduling of Data Gathering Trees for WSNs Asynchronous Schemes Asynchronous Wakeup Protocol (AWP) for Ad Hoc Networks Random Asynchronous Wakeup (RAW) Protocol for Sensor Networks Appraisal of Sleep/Wakeup Protocols 4.1.2.2 MAC Protocols with Low Duty-Cycle TDMA-Based MAC Protocols Traffic-Adaptive Medium Access Protocol (TRAMA) A Lightweight Medium Access Control (L-MAC) Protocol for WSNs Flow-Aware Medium Access (FLAMA) Contention-Based MAC Protocols Medium Access Control with Coordinated Adaptive Sleeping for WSNs (S-MAC) An Adaptive Energy-Efficient MAC Protocol for WSNs (T-MAC) An Adaptive Energy-Efficient and Low-Latency MAC for Data Gathering in WSNs (D-MAC) Versatile Low-Power Media Access for Sensor Networks (B-MAC) Hybrid MAC Protocols A Hybrid MAC for WSNs (Z-MAC) Appraisal of MAC Protocols with Low Duty-Cycle 4.2 Conclusion for Longer Duty-Cycling 4.3 Exercises References 5 Energy Management Techniques for WSNs (2): Data-Driven Approach 5.1 Data-Driven Approach Taxonomy 5.1.1 Data Reduction Protocols 5.1.1.1 In-Network Processing Protocols Tree-Based Data Aggregation Protocols Cluster-Based Data Aggregation Protocolsin-Network Processing Protocols Hybrid Tree/Cluster-Based Data Aggregation Protocols Multipath-Based Data Aggregation Protocols Hybrid Tree/Multipath-Based Data Aggregation Protocols Appraisal of In-Network Processing Protocols 5.1.1.2 Data Compression Protocols An Efficient Lossless Compression Algorithm for Tiny Nodes of Monitoring WSNs (LEC) 5.1.1.3 Data Prediction Protocols Stochastic Approaches Approximate Data Collection in Sensor Networks Using Probabilistic Models (Ken) Time-Series Forecasting Approaches Time-Series Forecasting for Approximate Query Answering in Sensor Networks (PAQ) Adaptive Model Selection for Time-Series Prediction in WSNs (AMS) Algorithmic Approaches Energy-Efficient Data Collection in Distributed Sensor Environments (EEDC) Buddy Appraisal of Data Prediction Protocols 5.1.2 Energy-Efficient Data Acquisition 5.1.2.1 Adaptive Sampling Adaptive Sampling for Energy Conservation in WSNs for Snow Monitoring Applications Event-Sensitive Autonomous Adaptive Sensing and Low-Cost Monitoring in Networked Sensing Systems (e-Sampling) 5.1.2.2 Multi-level and Cooperative Sampling Multi-Camera Coordination and Control in Surveillance Systems Multiscale Approach for Structural Health Monitoring 5.1.2.3 Model-Based Active Sampling Model-Driven Data Acquisition in Sensor Networks (BBQ) Derivative-Based Prediction (DBP) 5.1.2.4 Appraisal of Energy-Efficient Data Acquisition 5.2 Conclusion for Well-Managed Lifestyle 5.3 Exercises References 6 Energy Management Techniques for WSNs (3): Mobility-Based Approach 6.1 Mobility in WSNs 6.1.1 Architecture of WSNs with Mobile Elements 6.1.2 Role of Mobile Elements in WSNs 6.2 Mobility-Based Approach Taxonomy 6.2.1 Mobile Sink Protocols 6.2.1.1 Uncontrolled Sink Mobility Protocols Exploiting Sink Mobility for Maximizing Sensor Networks Lifetime Energy-Aware Routing to Maximize Lifetime in WSNs with Mobile Sink 6.2.1.2 Controlled Sink Mobility Protocols Controlled Sink Mobility for Prolonging WSNs Lifetime (GMRE) Maximizing the Lifetime of WSNs with Mobile Sink in Delay-Tolerant Applications (DT-MSM) 6.2.2 Mobile Relay Protocols 6.2.2.1 Exploiting Mobility for Energy-Efficient Data Collection in WSNs (MULEs) 6.2.2.2 Extending the Lifetime of WSNs Through Mobile Relays 6.3 Conclusion for Controlled Mobility 6.4 Exercises References Harvesting and Management Projects and Testbeds 7 Energy Harvesting Projects for WSNs 7.1 Necessities-Driven Projects 7.2 Energy Harvesting Projects 7.2.1 ZebraNet: Energy-Efficient Computing for Wildlife Tracking 7.2.1.1 Hardware Design The Microcontroller Peripheral Devices Radio Off-Chip Memory Sensing Devices 7.2.1.2 ZebraNet Targets 7.2.1.3 Energy Concerns System-Level Energy Management Power Supplies Solar Cells and Battery Solar Cells Battery 7.2.1.4 System Testing and Evaluation GPS Accuracy Radio Range Power Supplies 7.2.1.5 Deployment Gained Know-How 7.2.2 Prometheus for Perpetual Environmentally Powered Sensor Networks 7.2.2.1 Design and Analysis Environmental Energy Source Wireless Sensor Node Primary Buffer Secondary Buffer 7.2.2.2 Implementation Hardware Selection Telos Wireless Sensor Node Sensing and Control Charging Circuitry Driver and Software 7.2.2.3 Outcomes 7.2.3 Solar Biscuit: A Batteryless Wireless Sensor Network System for Environmental Monitoring Applications 7.2.3.1 Energy Requirements of WSNs for Environmental Monitoring Applications 7.2.3.2 Solar Biscuit Design Conceptual Design Communication Protocol Timing Sequence Ordinary Mode Emergency Mode Implementation and Performance Evaluation Hardware Implementation Performance Evaluation 7.2.4 Heliomote for Solar Energy Harvesting in Wireless Embedded Systems 7.2.4.1 Heliomote Design Basics and Modules Solar Cells Energy Storage Technologies Harvesting Circuit Design Energy Measurement 7.2.4.2 Harvesting-Aware Power Management 7.2.4.3 Design Choices and Implementation Hardware Considerations Software Interface 7.2.4.4 Performance Evaluation and Outcomes 7.2.5 Everlast: Long-Life, Super-Capacitor-Operated Wireless Sensor Node 7.2.5.1 Everlast Motivations 7.2.5.2 Design Considerations 7.2.5.3 Everlast Components PFM Regulator PFM Regulator Design PFM Regulator Test PFM Controller WSN Circuitry 7.2.5.4 Experimental Results Charging the Super-Capacitor Tracking the Solar Cell at MPP Running Continuously for 24 h a Day 7.2.5.5 Everlast Outcomes 7.2.6 AmbiMax: Autonomous Energy Harvesting Platform for Multisupply Wireless Sensor Nodes 7.2.6.1 Design Principles and Implementation Energy Harvesting Subsystem Principles of Operation Energy Harvesting Subsystem Implementation Reservoir Capacitor Array Control and Charger 7.2.6.2 Experimentation Outcome 7.2.7 Sunflower: Low-Power, Energy Harvesting System with Custom Multichannel Communication Interface 7.2.7.1 System Components and Design Objectives Overview Communication Interface Power Regulation Subsystem 7.2.7.2 Power-Adaptive Design Microcontroller Power Adaptation System-Level Power Adaptation 7.2.7.3 Sunflower Potential and Forecast Energy Scavenging Subsystems Compared Remote Charging via Infrared Laser Future Betterments 7.2.8 Micro-Solar Power Sensor Networks for Forest Watersheds 7.2.8.1 Solar Panels Macro-solar Panels Versus Micro-solar Panels 7.2.8.2 Network and Node Design Network Architecture Engineering the Node Micro-Power Subsystem 7.2.8.3 Micro-Solar Panels Design Considerations and Implementation Energy Storage Solar Panel Input Regulator Output Regulator 7.2.8.4 Evaluating the Design A Sensor Network in an Urban Neighborhood A Sensor Network in a Forest Watershed 7.2.8.5 Gained Experience 7.2.9 Energy Harvesting from Hybrid Indoor Ambient Light and Thermal Energy Sources 7.2.9.1 Characterization of Indoor Energy Sources Indoor Solar Energy Harvesting System Thermal Energy Harvesting System 7.2.9.2 Hybrid Energy Harvesting from Solar and Thermal Energy Sources Characteristics of Solar Panel and Thermal Energy Harvester Connected in Parallel Design and Implementation of Ultra-Low Power Management Circuit 7.2.9.3 Experimentation Outcomes Performance of Parallel HEH Configuration Power Conversion Efficiency of the HEH System Concluding Recap 7.3 Conclusion for Radiance 7.4 Exercises References 8 Energy Management Projects for WSNs 8.1 Energy Management Projects 8.2 Evolution and Sustainability of a Wildlife Monitoring Sensor Network 8.2.1 Initial System Design 8.2.1.1 Sensing Environmental Monitoring Badger Monitoring 8.2.1.2 Data Collection Compression and Local Storage Routing uIP MAC Layer 8.2.2 Evolution Stage 1: Improving Sensing and Data Collection 8.2.2.1 Adaptive Sensing Simulation-Based Evaluation Deployment-Based Evaluation 8.2.2.2 Delay-Tolerant Data Collection Data Priorities Node Priorities Priority and Mobility Aware Routing Evaluation 8.2.3 Evolution Stage 2: Hardware Improvements 8.2.3.1 Designing a New Node 8.2.3.2 Duty-Cycling Revisited 8.2.3.3 Data Collection Revisited 8.2.4 Network Maintenance Costs 8.2.5 Gained Experience 8.3 Conclusion for Brightness 8.4 Exercises References 9 WSNs Energy Testbeds 9.1 Functionalities 9.2 Typical WSNs Energy Testbed 9.2.1 PowerBench: A Scalable Testbed Infrastructure for Benchmarking Power Consumption 9.2.1.1 PowerBench Design 9.2.1.2 Experimentation and Outcomes 9.3 Conclusion for Brilliance 9.4 Exercises References Ignition 10 Last Flare Index Index of Abbreviations and Acronyms