ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Wireless Communication Signals: A Laboratory-based Approach

دانلود کتاب سیگنال های ارتباطی بی سیم: رویکردی مبتنی بر آزمایشگاه

Wireless Communication Signals: A Laboratory-based Approach

مشخصات کتاب

Wireless Communication Signals: A Laboratory-based Approach

ویرایش:  
نویسندگان:   
سری:  
ISBN (شابک) : 2020050695, 9781119764427 
ناشر: Wiley 
سال نشر: 2021 
تعداد صفحات: [467] 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 20 Mb 

قیمت کتاب (تومان) : 35,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 6


در صورت تبدیل فایل کتاب Wireless Communication Signals: A Laboratory-based Approach به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب سیگنال های ارتباطی بی سیم: رویکردی مبتنی بر آزمایشگاه نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی درمورد کتاب به خارجی



فهرست مطالب

Cover
Title Page
Copyright
Contents
Preface
List of Contributors
Acronyms List
Chapter 1 Hands‐on Wireless Communication Experience
	1.1 Importance of Laboratory‐Based Learning of Wireless Communications
	1.2 Model for a Practical Lab Bench
	1.3 Examples of Co‐simulation with Hardware
	1.4 A Sample Model for a Laboratory Course
		1.4.1 Introduction to the SDR and Testbed Platform
		1.4.2 Basic Simulation
		1.4.3 Measurements and Multidimensional Signal Analysis
		1.4.4 Digital Modulation
		1.4.5 Pulse Shaping
		1.4.6 RF Front‐end and RF Impairments
		1.4.7 Wireless Channel and Interference
		1.4.8 Synchronization and Channel Estimation
		1.4.9 OFDM Signal Analysis and Performance Evaluation
		1.4.10 Multiple Accessing
		1.4.11 Independent Project Development Phase
			1.4.11.1 Software Defined Radio
			1.4.11.2 Dynamic Spectrum Access and CR Experiment
			1.4.11.3 Wireless Channel
			1.4.11.4 Wireless Channel Counteractions
			1.4.11.5 Antenna Project
			1.4.11.6 Signal Intelligence
			1.4.11.7 Channel, User, and Context Awareness Project
			1.4.11.8 Combination of DSP Lab with RF and Microwave Lab
			1.4.11.9 Multiple Access and Interference Management
			1.4.11.10 Standards
	1.5 Conclusions
	References
Chapter 2 Performance Metrics and Measurements
	2.1 Signal Quality Measurements
		2.1.1 Measurements Before Demodulation
		2.1.2 Measurements During and After Demodulation
			2.1.2.1 Noise Figure
			2.1.2.2 Channel Frequency Response Estimation
		2.1.3 Measurements After Channel Decoding
			2.1.3.1 Relation of SNR with BER
		2.1.4 Error Vector Magnitude
			2.1.4.1 Error‐Vector‐Time and Error‐Vector‐Frequency
			2.1.4.2 Relation of EVM with Other Metrics
			2.1.4.3 Rho
		2.1.5 Measures After Speech or Video Decoding
	2.2 Visual Inspections and Useful Plots
		2.2.1 Advanced Scatter Plot
	2.3 Cognitive Radio and SDR Measurements
	2.4 Other Measurements
	2.5 Clarifying dB and dBm
	2.6 Conclusions
	References
Chapter 3 Multidimensional Signal Analysis
	3.1 Why Multiple Dimensions in a Radio Signal?
	3.2 Time Domain Analysis
		3.2.1 CCDF and PAPR
		3.2.2 Time Selectivity Measure
	3.3 Frequency Domain Analysis
		3.3.1 Adjacent Channel Power Ratio
		3.3.2 Frequency Selectivity Measure
	3.4 Joint Time‐Frequency Analysis
	3.5 Code Domain Analysis
		3.5.1 Code Selectivity
	3.6 Correlation Analysis
	3.7 Modulation Domain Analysis
	3.8 Angular Domain Analysis
		3.8.1 Direction Finding
		3.8.2 Angular Spread
	3.9 MIMO Measurements
		3.9.1 Antenna Correlation
		3.9.2 RF Cross‐Coupling
		3.9.3 EVM Versus Antenna Branches
		3.9.4 Channel Parameters
	3.10 Conclusions
	References
Chapter 4 Simulating a Communication System
	4.1 Simulation: What, Why?
	4.2 Approaching a Simulation
		4.2.1 Strategy
		4.2.2 General Methodology
	4.3 Basic Modeling Concepts
		4.3.1 System Modeling
		4.3.2 Subsystem Modeling
		4.3.3 Stochastic Modeling
	4.4 What is a Link/Link‐level Simulation?
		4.4.1 Source and Source Coding
		4.4.2 Channel Coding
		4.4.3 Symbol Mapping/Modulation
		4.4.4 Upsampling
		4.4.5 Digital Filtering
		4.4.6 RF Front‐end
		4.4.7 Channel
		4.4.8 Synchronization and Equalization
		4.4.9 Performance Evaluation and Signal Analysis
	4.5 Communication in AWGN – A Simple Case Study
		4.5.1 Receiver Design
	4.6 Multi‐link vs. Network‐level Simulations
		4.6.1 Network Layout Generation
			4.6.1.1 Hexagonal Grid
			4.6.1.2 PPP‐based Network Layout
	4.7 Practical Issues
		4.7.1 Monte Carlo Simulations
		4.7.2 Random Number Generation
			4.7.2.1 White Noise Generation
			4.7.2.2 Random Binary Sequence
		4.7.3 Values of Simulation Parameters
		4.7.4 Confidence Interval
		4.7.5 Convergence/Stopping Criterion
	4.8 Issues/Limitations of Simulations
		4.8.1 Modeling Errors
			4.8.1.1 Errors in System Model
			4.8.1.2 Errors in Subsystem Model
			4.8.1.3 Errors in Random Process Modeling
		4.8.2 Processing Errors
	4.9 Conclusions
	References
Chapter 5 RF Impairments
	5.1 Radio Impairment Sources
	5.2 IQ Modulation Impairments
	5.3 PA Nonlinearities
	5.4 Phase Noise and Time Jitter
	5.5 Frequency Offset
	5.6 ADC/DAC Impairments
	5.7 Thermal Noise
	5.8 RF Impairments and Interference
		5.8.1 Harmonics and Intermodulation Products
		5.8.2 Multiple Access Interference
	5.9 Conclusions
	References
Chapter 6 Digital Modulation and Pulse Shaping
	6.1 Digital Modulation Basics
	6.2 Popularly Used Digital Modulation Schemes
		6.2.1 PSK
		6.2.2 FSK
			6.2.2.1 GMSK and Approximate Representation of GSM GMSK Signal
		6.2.3 QAM
		6.2.4 Differential Modulation
	6.3 Adaptive Modulation
		6.3.1 Gray Mapping
		6.3.2 Calculation of Error
		6.3.3 Relation of EbNo with SNR at the Receiver
	6.4 Pulse‐Shaping Filtering
	6.5 Conclusions
	References
Chapter 7 OFDM Signal Analysis and Performance Evaluation
	7.1 Why OFDM?
	7.2 Generic OFDM System Design and Its Evaluation
		7.2.1 Basic CP‐OFDM Transceiver Design
		7.2.2 Spectrum of the OFDM Signal
		7.2.3 PAPR of the OFDM Signal
		7.2.4 Performance in Multipath Channel
			7.2.4.1 Time‐Dispersive Multipath Channel
			7.2.4.2 Frequency‐Dispersive Multipath Channel
		7.2.5 Performance with Impairments
			7.2.5.1 Frequency Offset
			7.2.5.2 Symbol Timing Error
			7.2.5.3 Sampling Clock Offset
			7.2.5.4 Phase Noise
			7.2.5.5 PA Nonlinearities
			7.2.5.6 I/Q Impairments
		7.2.6 Summary of the OFDM Design Considerations
		7.2.7 Coherent versus Differential OFDM
	7.3 OFDM‐like Signaling
		7.3.1 OFDM Versus SC‐FDE
		7.3.2 Multi‐user OFDM and OFDMA
		7.3.3 SC‐FDMA and DFT‐S‐OFDM
	7.4 Case Study: Measurement‐Based OFDM Receiver
		7.4.1 System Model
			7.4.1.1 Frame Format
			7.4.1.2 OFDM Symbol Format
			7.4.1.3 Baseband Transmitter Blocks and Transmitted Signal Model
			7.4.1.4 Received Signal Model
		7.4.2 Receiver Structure and Algorithms
			7.4.2.1 Packet Detection
			7.4.2.2 Frequency Offset Estimation and Compensation
			7.4.2.3 Symbol Timing Estimation
			7.4.2.4 Packet‐end Detection and Packet Extraction
			7.4.2.5 Channel Estimation and Equalization
			7.4.2.6 Pilot Tracking
			7.4.2.7 Auto‐modulation Detection
		7.4.3 FCH Decoding
		7.4.4 Test and Measurements
	7.5 Conclusions
	References
Chapter 8 Analysis of Single‐Carrier Communication Systems
	8.1 A Simple System in AWGN Channel
	8.2 Flat Fading (Non‐Dispersive) Multipath Channel
	8.3 Frequency‐Selective (Dispersive) Multipath Channel
		8.3.1 Time‐Domain Equalization
		8.3.2 Channel Estimation
		8.3.3 Frequency‐Domain Equalization
	8.4 Extension of Dispersive Multipath Channel to DS‐CDMA‐based Wideband Systems
	8.5 Conclusions
	References
Chapter 9 Multiple Accessing, Multi‐Numerology, Hybrid Waveforms
	9.1 Preliminaries
		9.1.1 Duplexing
		9.1.2 Downlink Communication
		9.1.3 Uplink Communication
		9.1.4 Traffic Theory and Trunking Gain
	9.2 Orthogonal Design
		9.2.1 TDMA
		9.2.2 FDMA
		9.2.3 Code Division Multiple Access (CDMA)
		9.2.4 Frequency Hopped Multiple Access (FHMA)
		9.2.5 Space Division Multiple Access (SDMA)
			9.2.5.1 Multiuser Multiple‐input Multiple‐output (MIMO)
	9.3 Non‐orthogonal Design
		9.3.1 Power‐domain Non‐orthogonal Multiple Access (PD‐NOMA)
		9.3.2 Code‐domain Non‐orthogonal Multiple Access
	9.4 Random Access
		9.4.1 ALOHA
		9.4.2 Carrier Sense Multiple Accessing (CSMA)
		9.4.3 Multiple Access Collision Avoidance (MACA)
		9.4.4 Random Access Channel (RACH)
		9.4.5 Grant‐free Random Access
	9.5 Multiple Accessing with Application‐Based Hybrid Waveform Design
		9.5.1 Multi‐numerology Orthogonal Frequency Division Multiple Access (OFDMA)
		9.5.2 Radar‐Sensing and Communication (RSC) Coexistence
		9.5.3 Coexistence of Different Waveforms in Multidimensional Hyperspace for 6G and Beyond Networks
	9.6 Case Study
	Appendix: Erlang B table
	References
Chapter 10 Wireless Channel and Interference
	10.1 Fundamental Propagation Phenomena
	10.2 Multipath Propagation
		10.2.1 Large‐Scale Fading
			10.2.1.1 Path Loss
			10.2.1.2 Shadowing
		10.2.2 Small‐Scale Fading
			10.2.2.1 Characterization of Time‐Varying Channels
			10.2.2.2 Rayleigh and Rician Fading Distributions
		10.2.3 Time, Frequency and Angular Domains Characteristics of Multipath Channel
			10.2.3.1 Delay Spread
			10.2.3.2 Angular Spread
			10.2.3.3 Doppler Spread
		10.2.4 Novel Channel Characteristics in the 5G Technology
	10.3 Channel as a Source of Interference
		10.3.1 Interference due to Large‐Scale Fading
			10.3.1.1 Cellular Systems and CoChannel Interference
			10.3.1.2 Cochannel Interference Control via Resource Assignment
		10.3.2 Interference due to Small‐Scale Fading
	10.4 Channel Modeling
		10.4.1 Analytical Channel Models
			10.4.1.1 Correlation‐based Models
			10.4.1.2 Propagation‐Motivated Models
		10.4.2 Physical Models
			10.4.2.1 Deterministic Model
			10.4.2.2 Geometry‐based Stochastic Model
			10.4.2.3 Nongeometry‐based Stochastic Models
		10.4.3 3GPP 5G Channel Models
			10.4.3.1 Tapped Delay Line (TDL) Model
			10.4.3.2 Clustered Delay Line (CDL) Model
			10.4.3.3 Generating Channel Coefficients Using CDL Model
		10.4.4 Role of Artificial Intelligence (AI) in Channel Modeling
	10.5 Channel Measurement
		10.5.1 Frequency Domain Channel Sounder
			10.5.1.1 Swept Frequency/Chirp Sounder
		10.5.2 Time Domain Channel Sounder
			10.5.2.1 Periodic Pulse/Impulse Sounder
			10.5.2.2 Correlative/Pulse Compression Sounders
		10.5.3 Challenges of Practical Channel Measurement
	10.6 Channel Emulation
		10.6.1 Baseband and RF Domain Channel Emulators
		10.6.2 Reverberation Chambers as Channel Emulator
			10.6.2.1 General Principles
			10.6.2.2 Emulating Multipath Effects Using RVC
		10.6.3 Commercial Wireless Channel Emulators
	10.7 Wireless Channel Control
	10.8 Conclusion
	References
Chapter 11 Carrier and Time Synchronization
	11.1 Signal Modeling
	11.2 Synchronization Approaches
	11.3 Carrier Synchronization
		11.3.1 Coarse Frequency Offset Compensation
			11.3.1.1 DFT‐based Coarse Frequency Offset Compensation
			11.3.1.2 Phase‐based Coarse Frequency Offset Compensation
		11.3.2 Fine Frequency Offset Compensation
			11.3.2.1 Feedforward MLE‐Based Frequency Offset Compensation
			11.3.2.2 Feedback Heuristic‐Based Frequency Offset Compensation
		11.3.3 Carrier Phase Offset Compensation
	11.4 Time Synchronization
		11.4.1 Frame Synchronization
		11.4.2 Symbol Timing Synchronization
			11.4.2.1 Feedforward MLE‐based Symbol Timing Synchronization
			11.4.2.2 Feedback Heuristic‐based Symbol Timing Synchronization
	11.5 Conclusion
	References
Chapter 12 Blind Signal Analysis
	12.1 What is Blind Signal Analysis?
	12.2 Applications of Blind Signal Analysis
		12.2.1 Spectrum Sensing
		12.2.2 Parameter Estimation and Signal Identification
			12.2.2.1 Parameter Estimation
			12.2.2.2 Signal Identification
		12.2.3 Radio Environment Map
		12.2.4 Equalization
		12.2.5 Modulation Identification
		12.2.6 Multi‐carrier (OFDM) Parameters Estimation
	12.3 Case Study: Blind Receiver
		12.3.1 Bandwidth Estimation
		12.3.2 Carrier Frequency Estimation
		12.3.3 Symbol Rate Estimation
		12.3.4 Pulse‐Shaping and Roll‐off Factor Estimation
		12.3.5 Optimum Sampling Phase Estimation
		12.3.6 Timing Recovery
		12.3.7 Frequency Offset and Phase Offset Estimation
	12.4 Machine Learning for Blind Signal Analysis
		12.4.1 Deep Learning
		12.4.2 Applications of Machine Learning
			12.4.2.1 Signal and Interference Identification
			12.4.2.2 Multi‐RF Impairments Identification, Separation, and Classification
			12.4.2.3 Channel Modeling and Estimation
			12.4.2.4 Spectrum Occupancy Prediction
	12.5 Challenges and Potential Study Items
		12.5.1 Challenges
		12.5.2 Potential Study Items
	12.6 Conclusions
	References
Chapter 13 Radio Environment Monitoring
	13.1 Radio Environment Map
	13.2 Generalized Radio Environment Monitoring
		13.2.1 Radio Environment Monitoring with the G‐REM Framework
	13.3 Node Types
	13.4 Sensing Modes
	13.5 Observable Data, Derivable Information and Other Sources
	13.6 Sensing Methods
		13.6.1 Sensing Configurations
		13.6.2 Processing Data and Control Signal
			13.6.2.1 Channel State Information (CSI)
			13.6.2.2 Channel Impulse Response (CIR)
			13.6.2.3 Channel Frequency Response (CFR)
		13.6.3 Blind Signal Analysis
		13.6.4 Radio Detection and Ranging
			13.6.4.1 Radar Test‐bed
		13.6.5 Joint Radar and Communication
			13.6.5.1 Coexistence
			13.6.5.2 Co‐Design
			13.6.5.3 RadComm
			13.6.5.4 CommRad
	13.7 Mapping Methods
		13.7.1 Signal Processing Algorithms
		13.7.2 Interpolation Techniques
			13.7.2.1 Inverse Distance Weighted Interpolation
			13.7.2.2 Kriging's Interpolation
		13.7.3 Model‐Based Techniques
		13.7.4 Learning‐Based Techniques
		13.7.5 Hybrid Techniques
		13.7.6 Case Study: Radio Frequency Map Construction
			13.7.6.1 Radio Frequency Map Construction Test‐bed for CR
		13.7.7 Case Study: Wireless Local Area Network/Wi‐Fi Sensing
			13.7.7.1 WLAN Sensing Test‐bed for Gesture Detection
	13.8 Applications of G‐REM
		13.8.1 Cognitive Radios
		13.8.2 Security
			13.8.2.1 PHY Layer Security
			13.8.2.2 Cross‐Layer Security
		13.8.3 Multi‐Antenna Communication Systems
			13.8.3.1 UE and Obstacle Tracking for Beam Management
			13.8.3.2 No‐Feedback Channel Estimation for FDD MIMO and mMIMO Systems
		13.8.4 Formation and Management of Ad Hoc Networks and Device‐to‐Device Communication
		13.8.5 Content Caching
		13.8.6 Enabling Flexible Radios for 6G and Beyond Networks
		13.8.7 Non‐Communication Applications
	13.9 Challenges and Future Directions
		13.9.1 Security
		13.9.2 Scheduling
		13.9.3 Integration of (New) Technologies
			13.9.3.1 Re‐configurable Intelligent Surfaces
			13.9.3.2 Quantum Radar
	13.10 Conclusion
	References
Index
EULA




نظرات کاربران