دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Hüseyin Arslan
سری:
ISBN (شابک) : 2020050695, 9781119764427
ناشر: Wiley
سال نشر: 2021
تعداد صفحات: [467]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 20 Mb
در صورت تبدیل فایل کتاب Wireless Communication Signals: A Laboratory-based Approach به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب سیگنال های ارتباطی بی سیم: رویکردی مبتنی بر آزمایشگاه نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Cover Title Page Copyright Contents Preface List of Contributors Acronyms List Chapter 1 Hands‐on Wireless Communication Experience 1.1 Importance of Laboratory‐Based Learning of Wireless Communications 1.2 Model for a Practical Lab Bench 1.3 Examples of Co‐simulation with Hardware 1.4 A Sample Model for a Laboratory Course 1.4.1 Introduction to the SDR and Testbed Platform 1.4.2 Basic Simulation 1.4.3 Measurements and Multidimensional Signal Analysis 1.4.4 Digital Modulation 1.4.5 Pulse Shaping 1.4.6 RF Front‐end and RF Impairments 1.4.7 Wireless Channel and Interference 1.4.8 Synchronization and Channel Estimation 1.4.9 OFDM Signal Analysis and Performance Evaluation 1.4.10 Multiple Accessing 1.4.11 Independent Project Development Phase 1.4.11.1 Software Defined Radio 1.4.11.2 Dynamic Spectrum Access and CR Experiment 1.4.11.3 Wireless Channel 1.4.11.4 Wireless Channel Counteractions 1.4.11.5 Antenna Project 1.4.11.6 Signal Intelligence 1.4.11.7 Channel, User, and Context Awareness Project 1.4.11.8 Combination of DSP Lab with RF and Microwave Lab 1.4.11.9 Multiple Access and Interference Management 1.4.11.10 Standards 1.5 Conclusions References Chapter 2 Performance Metrics and Measurements 2.1 Signal Quality Measurements 2.1.1 Measurements Before Demodulation 2.1.2 Measurements During and After Demodulation 2.1.2.1 Noise Figure 2.1.2.2 Channel Frequency Response Estimation 2.1.3 Measurements After Channel Decoding 2.1.3.1 Relation of SNR with BER 2.1.4 Error Vector Magnitude 2.1.4.1 Error‐Vector‐Time and Error‐Vector‐Frequency 2.1.4.2 Relation of EVM with Other Metrics 2.1.4.3 Rho 2.1.5 Measures After Speech or Video Decoding 2.2 Visual Inspections and Useful Plots 2.2.1 Advanced Scatter Plot 2.3 Cognitive Radio and SDR Measurements 2.4 Other Measurements 2.5 Clarifying dB and dBm 2.6 Conclusions References Chapter 3 Multidimensional Signal Analysis 3.1 Why Multiple Dimensions in a Radio Signal? 3.2 Time Domain Analysis 3.2.1 CCDF and PAPR 3.2.2 Time Selectivity Measure 3.3 Frequency Domain Analysis 3.3.1 Adjacent Channel Power Ratio 3.3.2 Frequency Selectivity Measure 3.4 Joint Time‐Frequency Analysis 3.5 Code Domain Analysis 3.5.1 Code Selectivity 3.6 Correlation Analysis 3.7 Modulation Domain Analysis 3.8 Angular Domain Analysis 3.8.1 Direction Finding 3.8.2 Angular Spread 3.9 MIMO Measurements 3.9.1 Antenna Correlation 3.9.2 RF Cross‐Coupling 3.9.3 EVM Versus Antenna Branches 3.9.4 Channel Parameters 3.10 Conclusions References Chapter 4 Simulating a Communication System 4.1 Simulation: What, Why? 4.2 Approaching a Simulation 4.2.1 Strategy 4.2.2 General Methodology 4.3 Basic Modeling Concepts 4.3.1 System Modeling 4.3.2 Subsystem Modeling 4.3.3 Stochastic Modeling 4.4 What is a Link/Link‐level Simulation? 4.4.1 Source and Source Coding 4.4.2 Channel Coding 4.4.3 Symbol Mapping/Modulation 4.4.4 Upsampling 4.4.5 Digital Filtering 4.4.6 RF Front‐end 4.4.7 Channel 4.4.8 Synchronization and Equalization 4.4.9 Performance Evaluation and Signal Analysis 4.5 Communication in AWGN – A Simple Case Study 4.5.1 Receiver Design 4.6 Multi‐link vs. Network‐level Simulations 4.6.1 Network Layout Generation 4.6.1.1 Hexagonal Grid 4.6.1.2 PPP‐based Network Layout 4.7 Practical Issues 4.7.1 Monte Carlo Simulations 4.7.2 Random Number Generation 4.7.2.1 White Noise Generation 4.7.2.2 Random Binary Sequence 4.7.3 Values of Simulation Parameters 4.7.4 Confidence Interval 4.7.5 Convergence/Stopping Criterion 4.8 Issues/Limitations of Simulations 4.8.1 Modeling Errors 4.8.1.1 Errors in System Model 4.8.1.2 Errors in Subsystem Model 4.8.1.3 Errors in Random Process Modeling 4.8.2 Processing Errors 4.9 Conclusions References Chapter 5 RF Impairments 5.1 Radio Impairment Sources 5.2 IQ Modulation Impairments 5.3 PA Nonlinearities 5.4 Phase Noise and Time Jitter 5.5 Frequency Offset 5.6 ADC/DAC Impairments 5.7 Thermal Noise 5.8 RF Impairments and Interference 5.8.1 Harmonics and Intermodulation Products 5.8.2 Multiple Access Interference 5.9 Conclusions References Chapter 6 Digital Modulation and Pulse Shaping 6.1 Digital Modulation Basics 6.2 Popularly Used Digital Modulation Schemes 6.2.1 PSK 6.2.2 FSK 6.2.2.1 GMSK and Approximate Representation of GSM GMSK Signal 6.2.3 QAM 6.2.4 Differential Modulation 6.3 Adaptive Modulation 6.3.1 Gray Mapping 6.3.2 Calculation of Error 6.3.3 Relation of EbNo with SNR at the Receiver 6.4 Pulse‐Shaping Filtering 6.5 Conclusions References Chapter 7 OFDM Signal Analysis and Performance Evaluation 7.1 Why OFDM? 7.2 Generic OFDM System Design and Its Evaluation 7.2.1 Basic CP‐OFDM Transceiver Design 7.2.2 Spectrum of the OFDM Signal 7.2.3 PAPR of the OFDM Signal 7.2.4 Performance in Multipath Channel 7.2.4.1 Time‐Dispersive Multipath Channel 7.2.4.2 Frequency‐Dispersive Multipath Channel 7.2.5 Performance with Impairments 7.2.5.1 Frequency Offset 7.2.5.2 Symbol Timing Error 7.2.5.3 Sampling Clock Offset 7.2.5.4 Phase Noise 7.2.5.5 PA Nonlinearities 7.2.5.6 I/Q Impairments 7.2.6 Summary of the OFDM Design Considerations 7.2.7 Coherent versus Differential OFDM 7.3 OFDM‐like Signaling 7.3.1 OFDM Versus SC‐FDE 7.3.2 Multi‐user OFDM and OFDMA 7.3.3 SC‐FDMA and DFT‐S‐OFDM 7.4 Case Study: Measurement‐Based OFDM Receiver 7.4.1 System Model 7.4.1.1 Frame Format 7.4.1.2 OFDM Symbol Format 7.4.1.3 Baseband Transmitter Blocks and Transmitted Signal Model 7.4.1.4 Received Signal Model 7.4.2 Receiver Structure and Algorithms 7.4.2.1 Packet Detection 7.4.2.2 Frequency Offset Estimation and Compensation 7.4.2.3 Symbol Timing Estimation 7.4.2.4 Packet‐end Detection and Packet Extraction 7.4.2.5 Channel Estimation and Equalization 7.4.2.6 Pilot Tracking 7.4.2.7 Auto‐modulation Detection 7.4.3 FCH Decoding 7.4.4 Test and Measurements 7.5 Conclusions References Chapter 8 Analysis of Single‐Carrier Communication Systems 8.1 A Simple System in AWGN Channel 8.2 Flat Fading (Non‐Dispersive) Multipath Channel 8.3 Frequency‐Selective (Dispersive) Multipath Channel 8.3.1 Time‐Domain Equalization 8.3.2 Channel Estimation 8.3.3 Frequency‐Domain Equalization 8.4 Extension of Dispersive Multipath Channel to DS‐CDMA‐based Wideband Systems 8.5 Conclusions References Chapter 9 Multiple Accessing, Multi‐Numerology, Hybrid Waveforms 9.1 Preliminaries 9.1.1 Duplexing 9.1.2 Downlink Communication 9.1.3 Uplink Communication 9.1.4 Traffic Theory and Trunking Gain 9.2 Orthogonal Design 9.2.1 TDMA 9.2.2 FDMA 9.2.3 Code Division Multiple Access (CDMA) 9.2.4 Frequency Hopped Multiple Access (FHMA) 9.2.5 Space Division Multiple Access (SDMA) 9.2.5.1 Multiuser Multiple‐input Multiple‐output (MIMO) 9.3 Non‐orthogonal Design 9.3.1 Power‐domain Non‐orthogonal Multiple Access (PD‐NOMA) 9.3.2 Code‐domain Non‐orthogonal Multiple Access 9.4 Random Access 9.4.1 ALOHA 9.4.2 Carrier Sense Multiple Accessing (CSMA) 9.4.3 Multiple Access Collision Avoidance (MACA) 9.4.4 Random Access Channel (RACH) 9.4.5 Grant‐free Random Access 9.5 Multiple Accessing with Application‐Based Hybrid Waveform Design 9.5.1 Multi‐numerology Orthogonal Frequency Division Multiple Access (OFDMA) 9.5.2 Radar‐Sensing and Communication (RSC) Coexistence 9.5.3 Coexistence of Different Waveforms in Multidimensional Hyperspace for 6G and Beyond Networks 9.6 Case Study Appendix: Erlang B table References Chapter 10 Wireless Channel and Interference 10.1 Fundamental Propagation Phenomena 10.2 Multipath Propagation 10.2.1 Large‐Scale Fading 10.2.1.1 Path Loss 10.2.1.2 Shadowing 10.2.2 Small‐Scale Fading 10.2.2.1 Characterization of Time‐Varying Channels 10.2.2.2 Rayleigh and Rician Fading Distributions 10.2.3 Time, Frequency and Angular Domains Characteristics of Multipath Channel 10.2.3.1 Delay Spread 10.2.3.2 Angular Spread 10.2.3.3 Doppler Spread 10.2.4 Novel Channel Characteristics in the 5G Technology 10.3 Channel as a Source of Interference 10.3.1 Interference due to Large‐Scale Fading 10.3.1.1 Cellular Systems and CoChannel Interference 10.3.1.2 Cochannel Interference Control via Resource Assignment 10.3.2 Interference due to Small‐Scale Fading 10.4 Channel Modeling 10.4.1 Analytical Channel Models 10.4.1.1 Correlation‐based Models 10.4.1.2 Propagation‐Motivated Models 10.4.2 Physical Models 10.4.2.1 Deterministic Model 10.4.2.2 Geometry‐based Stochastic Model 10.4.2.3 Nongeometry‐based Stochastic Models 10.4.3 3GPP 5G Channel Models 10.4.3.1 Tapped Delay Line (TDL) Model 10.4.3.2 Clustered Delay Line (CDL) Model 10.4.3.3 Generating Channel Coefficients Using CDL Model 10.4.4 Role of Artificial Intelligence (AI) in Channel Modeling 10.5 Channel Measurement 10.5.1 Frequency Domain Channel Sounder 10.5.1.1 Swept Frequency/Chirp Sounder 10.5.2 Time Domain Channel Sounder 10.5.2.1 Periodic Pulse/Impulse Sounder 10.5.2.2 Correlative/Pulse Compression Sounders 10.5.3 Challenges of Practical Channel Measurement 10.6 Channel Emulation 10.6.1 Baseband and RF Domain Channel Emulators 10.6.2 Reverberation Chambers as Channel Emulator 10.6.2.1 General Principles 10.6.2.2 Emulating Multipath Effects Using RVC 10.6.3 Commercial Wireless Channel Emulators 10.7 Wireless Channel Control 10.8 Conclusion References Chapter 11 Carrier and Time Synchronization 11.1 Signal Modeling 11.2 Synchronization Approaches 11.3 Carrier Synchronization 11.3.1 Coarse Frequency Offset Compensation 11.3.1.1 DFT‐based Coarse Frequency Offset Compensation 11.3.1.2 Phase‐based Coarse Frequency Offset Compensation 11.3.2 Fine Frequency Offset Compensation 11.3.2.1 Feedforward MLE‐Based Frequency Offset Compensation 11.3.2.2 Feedback Heuristic‐Based Frequency Offset Compensation 11.3.3 Carrier Phase Offset Compensation 11.4 Time Synchronization 11.4.1 Frame Synchronization 11.4.2 Symbol Timing Synchronization 11.4.2.1 Feedforward MLE‐based Symbol Timing Synchronization 11.4.2.2 Feedback Heuristic‐based Symbol Timing Synchronization 11.5 Conclusion References Chapter 12 Blind Signal Analysis 12.1 What is Blind Signal Analysis? 12.2 Applications of Blind Signal Analysis 12.2.1 Spectrum Sensing 12.2.2 Parameter Estimation and Signal Identification 12.2.2.1 Parameter Estimation 12.2.2.2 Signal Identification 12.2.3 Radio Environment Map 12.2.4 Equalization 12.2.5 Modulation Identification 12.2.6 Multi‐carrier (OFDM) Parameters Estimation 12.3 Case Study: Blind Receiver 12.3.1 Bandwidth Estimation 12.3.2 Carrier Frequency Estimation 12.3.3 Symbol Rate Estimation 12.3.4 Pulse‐Shaping and Roll‐off Factor Estimation 12.3.5 Optimum Sampling Phase Estimation 12.3.6 Timing Recovery 12.3.7 Frequency Offset and Phase Offset Estimation 12.4 Machine Learning for Blind Signal Analysis 12.4.1 Deep Learning 12.4.2 Applications of Machine Learning 12.4.2.1 Signal and Interference Identification 12.4.2.2 Multi‐RF Impairments Identification, Separation, and Classification 12.4.2.3 Channel Modeling and Estimation 12.4.2.4 Spectrum Occupancy Prediction 12.5 Challenges and Potential Study Items 12.5.1 Challenges 12.5.2 Potential Study Items 12.6 Conclusions References Chapter 13 Radio Environment Monitoring 13.1 Radio Environment Map 13.2 Generalized Radio Environment Monitoring 13.2.1 Radio Environment Monitoring with the G‐REM Framework 13.3 Node Types 13.4 Sensing Modes 13.5 Observable Data, Derivable Information and Other Sources 13.6 Sensing Methods 13.6.1 Sensing Configurations 13.6.2 Processing Data and Control Signal 13.6.2.1 Channel State Information (CSI) 13.6.2.2 Channel Impulse Response (CIR) 13.6.2.3 Channel Frequency Response (CFR) 13.6.3 Blind Signal Analysis 13.6.4 Radio Detection and Ranging 13.6.4.1 Radar Test‐bed 13.6.5 Joint Radar and Communication 13.6.5.1 Coexistence 13.6.5.2 Co‐Design 13.6.5.3 RadComm 13.6.5.4 CommRad 13.7 Mapping Methods 13.7.1 Signal Processing Algorithms 13.7.2 Interpolation Techniques 13.7.2.1 Inverse Distance Weighted Interpolation 13.7.2.2 Kriging's Interpolation 13.7.3 Model‐Based Techniques 13.7.4 Learning‐Based Techniques 13.7.5 Hybrid Techniques 13.7.6 Case Study: Radio Frequency Map Construction 13.7.6.1 Radio Frequency Map Construction Test‐bed for CR 13.7.7 Case Study: Wireless Local Area Network/Wi‐Fi Sensing 13.7.7.1 WLAN Sensing Test‐bed for Gesture Detection 13.8 Applications of G‐REM 13.8.1 Cognitive Radios 13.8.2 Security 13.8.2.1 PHY Layer Security 13.8.2.2 Cross‐Layer Security 13.8.3 Multi‐Antenna Communication Systems 13.8.3.1 UE and Obstacle Tracking for Beam Management 13.8.3.2 No‐Feedback Channel Estimation for FDD MIMO and mMIMO Systems 13.8.4 Formation and Management of Ad Hoc Networks and Device‐to‐Device Communication 13.8.5 Content Caching 13.8.6 Enabling Flexible Radios for 6G and Beyond Networks 13.8.7 Non‐Communication Applications 13.9 Challenges and Future Directions 13.9.1 Security 13.9.2 Scheduling 13.9.3 Integration of (New) Technologies 13.9.3.1 Re‐configurable Intelligent Surfaces 13.9.3.2 Quantum Radar 13.10 Conclusion References Index EULA