دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Manju Khari, Manisha Bharti, M. Niranjanamurthy سری: Advances in Data Engineering and Machine Learning ISBN (شابک) : 1119777143, 9781119777144 ناشر: Wiley-Scrivener سال نشر: 2023 تعداد صفحات: 288 [290] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 14 Mb
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Wireless Communication Security به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب امنیت ارتباطات بی سیم نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
امنیت ارتباطات بیسیم با ارائه مفاهیم و پیشرفتهای امنیت ارتباطات بیسیم، این جلد که توسط یک تیم جهانی از متخصصان نوشته و ویرایش شده است، به کاربردهای عملی برای مهندسان، دانشجویان و سایر متخصصان صنعت نیز میرود. این جلد جدید برجسته با پوشش طیف گسترده ای از موضوعات در امنیت ارتباطات بی سیم و راه حل های آن، مورد توجه مهندسین، دانشمندان و دانشجویان با زمینه ها و علایق مختلف است. با تمرکز بر ارائه تئوری ارتباطات بی سیم در چارچوب کاربردهای عملی آن، مشارکت کنندگان موضوعات زیادی را مطرح می کنند و حوزه های به ظاهر متنوع را تحت یک پوشش یکپارچه می کنند. امنیت ارتباطات بی سیم به پنج واحد تقسیم شده است. واحد اول پروتکل ها و استانداردهای مختلف را برای توسعه امنیت ارتباط بی سیم بلادرنگ ارائه می دهد. واحد دوم شبکه های مختلف و به طور گسترده پذیرفته شده را ارائه می دهد که هسته اصلی امنیت ارتباطات بی سیم هستند. واحد سه روش های مختلف کنترل دستگاه و شبکه را ارائه می دهد. واحد چهار الگوریتمهای مختلف با کارایی بالا و کارآمد محاسباتی را برای اجرای کارآمد و مقیاسپذیر پروتکلهای شبکه ارائه میکند و آخرین واحد نوآوریهای پیشرو و تنوع استفاده از امنیت ارتباطات بیسیم را ارائه میدهد. به عنوان یک ابزار یادگیری برای مبتدیان در این زمینه و همچنین مرجع روزانه برای مهندسان و دانشمندانی که در این زمینه ها کار می کنند، این یک ابزار ضروری برای هر کتابخانه است.
WIRELESS COMMUNICATION SECURITY Presenting the concepts and advances of wireless communication security, this volume, written and edited by a global team of experts, also goes into the practical applications for the engineer, student, and other industry professionals. Covering a broad range of topics in wireless communication security and its solutions, this outstanding new volume is of great interest to engineers, scientists, and students from a variety of backgrounds and interests. Focusing on providing the theory of wireless communication within the framework of its practical applications, the contributors take on a wealth of topics, integrating seemingly diverse areas under one cover. Wireless Communication Security has been divided into five units. The first unit presents the different protocols and standards for developing a real-time wireless communication security. The second unit presents different widely accepted networks, which are the core of wireless communication security. Unit three presents the various device and network controlling methodologies. Unit four presents the various high performance and computationally efficient algorithms for efficient and scalable implementation of network protocols, and the last unit presents the leading innovations and variety of usage of wireless communication security. Valuable as a learning tool for beginners in this area as well as a daily reference for engineers and scientists working in these areas, this is a must-have for any library.
Cover Title Page Copyright Page Contents Preface Chapter 1 M2M in 5G Cellular Networks: Challenges, Proposed Solutions, and Future Directions 1.1 Introduction 1.2 Literature Survey 1.3 Survey Challenges and Proposed Solutions of M2M 1.3.1 PARCH Overload Problem 1.3.2 Inefficient Radio Resource Utilization and Allocation 1.3.3 M2M Random Access Challenges 1.3.4 Clustering Techniques 1.3.5 QoS Provisioning for M2M Communications 1.3.6 Less Cost and Low Power Device Requirements 1.3.7 Security and Privacy 1.4 Conclusion References Chapter 2 MAC Layer Protocol for Wireless Security 2.1 Introduction 2.2 MAC Layer 2.2.1 Centralized Control 2.2.2 Deterministic Access 2.2.3 Non-Deterministic Access 2.3 Functions of the MAC Layer 2.4 MAC Layer Protocol 2.4.1 Random Access Protocol 2.4.2 Controlled Access Protocols 2.4.3 Channelization 2.5 MAC Address 2.6 Conclusion and Future Scope References Chapter 3 Enhanced Image Security Through Hybrid Approach: Protect Your Copyright Over Digital Images 3.1 Introduction 3.2 Literature Review 3.3 Design Issues 3.3.1 Robustness Against Various Attack Conditions 3.3.2 Distortion and Visual Quality 3.3.3 Working Domain 3.3.4 Human Visual System (HVS) 3.3.5 The Trade-Off between Robustness and Imperceptibility 3.3.6 Computational Cost 3.4 A Secure Grayscale Image Watermarking Based on DWT-SVD 3.5 Experimental Results 3.6 Conclusion References Chapter 4 Quantum Computing 4.1 Introduction 4.2 A Brief History of Quantum Computing 4.3 Postulate of Quantum Mechanics 4.4 Polarization and Entanglement 4.5 Applications and Advancements 4.5.1 Cryptography, Teleportation and Communication Networks 4.5.2 Quantum Computing and Memories 4.5.3 Satellite Communication Based on Quantum Computing 4.5.4 Machine Learning & Artificial Intelligence 4.6 Optical Quantum Computing 4.7 Experimental Realisation of Quantum Computer 4.7.1 Hetero-Polymers 4.7.2 Ion Traps 4.7.3 Quantum Electrodynamics Cavity 4.7.4 Quantum Dots 4.8 Challenges of Quantum Computing 4.9 Conclusion and Future Scope References Chapter 5 Feature Engineering for Flow-Based IDS 5.1 Introduction 5.1.1 Intrusion Detection System 5.1.2 IDS Classification 5.2 IP Flows 5.2.1 The Architecture of Flow-Based IDS 5.2.2 Wireless IDS Designed Using Flow-Based Approach 5.2.3 Comparison of Flow- and Packet-Based IDS 5.3 Feature Engineering 5.3.1 Curse of Dimensionality 5.3.2 Feature Selection 5.3.3 Feature Categorization 5.4 Classification of Feature Selection Technique 5.4.1 The Wrapper, Filter, and Embedded Feature Selection 5.4.2 Correlation, Consistency, and PCA-Based Feature Selection 5.4.3 Similarity, Information Theoretical, Sparse Learning, and Statistical-Based Feature Selection 5.4.4 Univariate and Multivariate Feature Selection 5.5 Tools and Library for Feature Selection 5.6 Literature Review on Feature Selection in Flow-Based IDS 5.7 Challenges and Future Scope 5.8 Conclusions Acknowledgement References Chapter 6 Environmental Aware Thermal (EAT) Routing Protocol for Wireless Sensor Networks 6.1 Introduction 6.1.1 Single Path Routing Protocol 6.1.2 Multipath Routing Protocol 6.1.3 Environmental Influence on WSN 6.2 Motivation Behind the Work 6.3 Novelty of This Work 6.4 Related Works 6.5 Proposed Environmental Aware Thermal (EAT) Routing Protocol 6.5.1 Sensor Node Environmental Modeling and Analysis 6.5.2 Single Node Environmental Influence Modeling 6.5.3 Multiple Node Modeling 6.5.4 Sensor Node Surrounding Temperature Field 6.5.5 Sensor Node Remaining Energy Calculation 6.5.6 Delay Modeling 6.6 Simulation Parameters 6.7 Results and Discussion 6.7.1 Temperature Influence on Network 6.7.2 Power Consumption 6.7.3 Lifetime Analysis 6.7.4 Delay Analysis 6.8 Conclusion References Chapter 7 A Comprehensive Study of Intrusion Detection and Prevention Systems 7.1 Introduction 7.1.1 Intrusion and Detection 7.1.2 Some Basic Definitions 7.1.3 Intrusion Detection and Prevention System 7.1.4 Need for IDPS: More Than Ever 7.1.5 Introduction to Alarms 7.1.6 Components of an IDPS 7.2 Configuring IDPS 7.2.1 Network Architecture of IDPS 7.2.2 A Glance at Common Types 7.2.2.1 Network-Based IDS 7.2.2.2 Host-Based IDS 7.2.3 Intrusion Detection Techniques 7.2.3.1 Conventional Techniques 7.2.3.2 Machine Learning-Based and Hybrid Techniques 7.2.4 Three Considerations 7.2.4.1 Location of Sensors 7.2.4.2 Security Capabilities 7.2.4.3 Management Capabilities 7.2.5 Administrators’ Functions 7.2.5.1 Deployment 7.2.5.2 Testing 7.2.5.3 Security Consideration of IDPS 7.2.5.4 Regular Backups and Monitoring 7.2.6 Types of Events Detected 7.2.7 Role of State in Network Security 7.3 Literature Review 7.4 Conclusion References Chapter 8 Hardware Devices Integration With IoT 8.1 Introduction 8.2 Literature Review 8.3 Component Description 8.3.1 Arduino Board UNO 8.3.2 Raspberry Pi 8.4 Case Studies 8.4.1 Ultrasonic Sensor 8.4.2 Temperature and Humidity Sensor 8.4.3 Weather Monitoring System Using Raspberry Pi 8.5 Drawbacks of Arduino and Raspberry Pi 8.6 Challenges in IoT 8.6.1 Design Challenges 8.6.2 Security Challenges 8.6.3 Development Challenges 8.7 Conclusion 8.8 Annexures References Additional Resources Chapter 9 Depth Analysis On DoS & DDoS Attacks 9.1 Introduction 9.1.1 Objective and Motivation 9.1.2 Symptoms and Manifestations 9.2 Literature Survey 9.3 Timeline of DoS and DDoS Attacks 9.4 Evolution of Denial of Service (DoS) & Distributed Denial of Service (DDoS) 9.5 DDoS Attacks: A Taxonomic Classification 9.5.1 Classification Based on Degree of Automation 9.5.2 Classification Based on Exploited Vulnerability 9.5.3 Classification Based on Rate Dynamics of Attacks 9.5.4 Classification Based on Impact 9.6 Transmission Control Protocol 9.6.1 TCP Three-Way Handshake 9.7 User Datagram Protocol 9.7.1 UDP Header 9.8 Types of DDoS Attacks 9.8.1 TCP SYN Flooding Attack 9.8.2 UDP Flooding Attack 9.8.3 Smurf Attack 9.8.4 Ping of Death Attack 9.8.5 HTTP Flooding Attack 9.9 Impact of DoS/DDoS on Various Areas 9.9.1 DoS/DDoS Attacks on VoIP Networks Using SIP 9.9.2 DoS/DDoS Attacks on VANET 9.9.3 DoS/DDoS Attacks on Smart Grid System 9.9.4 DoS/DDoS Attacks in IoT-Based Devices 9.10 Countermeasures to DDoS Attack 9.10.1 Prevent Being Agent/Secondary Target 9.10.2 Detect and Neutralize Attacker 9.10.3 Potential Threats Detection/Prevention 9.10.4 DDoS Attacks and How to Avoid Them 9.10.5 Deflect Attack 9.10.6 Post-Attack Forensics 9.11 Conclusion 9.12 Future Scope References Chapter 10 SQL Injection Attack on Database System 10.1 Introduction 10.1.1 Types of Vulnerabilities 10.1.2 Types of SQL Injection Attack 10.1.3 Impact of SQL Injection Attack 10.2 Objective and Motivation 10.3 Process of SQL Injection Attack 10.4 Related Work 10.5 Literature Review 10.6 Implementation of the SQL Injection Attack 10.6.1 Access the Database Using the 1=1 SQL Injection Statement 10.6.2 Access the Database Using the ““=’’’’ SQL Injection Statement 10.6.3 Access and Upgrade the Database by Using Batch SQL Injection Statement 10.7 Detection of SQL Injection Attack 10.8 Prevention/Mitigation from SQL Injection Attack 10.9 Conclusion References Chapter 11 Machine Learning Techniques for Face Authentication System for Security Purposes 11.1 Introduction 11.2 Face Recognition System (FRS) in Security 11.3 Theory 11.3.1 Neural Networks 11.3.2 Convolutional Neural Network (CNN) 11.3.3 K-Nearest Neighbors (KNN) 11.3.4 Support Vector Machine (SVM) 11.3.5 Logistic Regression (LR) 11.3.6 Naive Bayes (NB) 11.3.7 Decision Tree (DT) 11.4 Experimental Methodology 11.4.1 Dataset 11.4.2 Convolutional Neural Network (CNN) 11.4.3 Other Machine Learning Techniques 11.5 Results 11.6 Conclusion References Chapter 12 Estimation of Computation Time for Software-Defined Networking-Based Data Traffic Offloading System in Heterogeneous Network 12.1 Introduction 12.1.1 Motivation 12.1.2 Objective 12.1.3 The Main Contributions of This Chapter 12.2 Analysis of SDN-TOS Mechanism 12.2.1 Key Components of SDN-TOS 12.2.2 LTE/Wi-Fi in a Heterogeneous Network (HetNet) 12.2.3 Centralized SDN Controller 12.2.4 Key Design Considerations of SDN-TOS 12.2.4.1 The System Architecture 12.2.4.2 Mininet Wi-Fi Emulated Networks 12.2.4.3 Software-Defined Networking Controller 12.3 Materials and Methods 12.3.1 Estimating Time Consumption for Mininet Wi-Fi Emulator 12.3.1.1 Total Time Consumption for Offloading the Data Traffic by Service Provider 12.3.1.2 Total Time Consumption of Mininet Wi-Fi Emulator (Time Consumption for Both LTE and Wi-Fi Network) 12.3.2 Estimating Time Consumption for SDN Controller 12.3.2.1 Total Response Time for Sub-Controller 12.3.2.2 Total Response Time for The Total Process of Centralized SDN Controller 12.3.3 Estimating Total Time Consumption for SDN-Based Traffic Offloading System (SDN-TOS) 12.4 Simulation Results 12.4.1 Effect of Computational Data Traffic θI on Total Response Time (TA)/Service Provider A and CSP Approach 12.4.2 Effect of Computational Data Traffic θI on Total Response Time (TA) for Different Service Providers/Service Provider A and Service Provider B 12.5 Discussion 12.6 Conclusion References About the Editors Index EULA