دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [2 ed.]
نویسندگان: Trevor M. Letcher
سری:
ISBN (شابک) : 9780323993531
ناشر: Academic Press, Elsevier
سال نشر: 2023
تعداد صفحات: 588
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 31 Mb
در صورت تبدیل فایل کتاب Wind Energy Engineering. A Handbook for Onshore and Offshore Wind Turbines به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب مهندسی انرژی بادی. کتاب راهنمای توربین های بادی خشکی و فراساحلی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
مهندسی انرژی بادی: کتابچه راهنمای توربینهای بادی خشکی و فراساحلی، ویرایش دوم همچنان پیشرفتهترین، بهروزترین و پژوهشگرترین متن در تمام جنبههای مهندسی انرژی بادی است. این نسخه جدید که طیف گستردهتری از موضوعات در زمینه توربینهای بادی (دریایی و خشکی) را پوشش میدهد، شامل طراحیها و بهینهسازی توربینهای هوشمند جدید، چالشها و کاراییهای فعلی، سنجش از دور و نظارت هوشمند، و زمینههای کلیدی پیشرفت، مانند باد شناور است. توربین ها هر فصل شامل یک مرور کلی تحقیق با تجزیه و تحلیل دقیق و مطالعات موردی جدید است که به چگونگی اعمال پیشرفت های تحقیقاتی اخیر می پردازد. این کتاب که توسط برخی از آیندهنگرترین متخصصان این حوزه نوشته شده است، و با بررسی کامل یکی از امیدوارکنندهترین و کارآمدترین منابع انرژی تجدیدپذیر، مرجع ارزشمندی در این زمینه بین رشتهای برای مهندسان است. ارائه درک همه جانبه از پیوندهای بین منابع در سراسر جهان، از جمله فن آوری توربین های بادی، برق و مسائل زیست محیطی، و اقتصاد ارائه آخرین تحقیق و توسعه در بیش از 33 زمینه تلاش مرتبط با انرژی باد شامل مجموعه گسترده ای از مراجع در هر فصل ، آخرین تفکرات و اطلاعات را در مورد هر موضوع به خوانندگان می دهد
Wind Energy Engineering: A Handbook for Onshore and Offshore Wind Turbines, Second Edition continues to be the most advanced, up-to-date and research-focused text on all aspects of wind energy engineering. Covering a wider spectrum of topics in the field of wind turbines (offshore and onshore), this new edition includes new intelligent turbine designs and optimization, current challenges and efficiencies, remote sensing and smart monitoring, and key areas of advancement, such as floating wind turbines. Each chapter includes a research overview with a detailed analysis and new case studies looking at how recent research developments can be applied. Written by some of the most forward-thinking professionals in the field, and giving a complete examination of one of the most promising and efficient sources of renewable energy, this book is an invaluable reference into this cross-disciplinary field for engineers. Offers an all-around understanding of the links between worldwide resources, including wind turbine technology, electricity and environmental issues, and economics Provide the very latest research and development in over 33 fields of endeavor related to wind power Includes extensive sets of references in each chapter, giving readers all the very latest thinking and information on each topic
Front Cover Wind Energy Engineering Copyright Page Contents List of Contributors Preface A. Introduction 1 Why wind energy 1.1 Introduction 1.2 Climate change and the growth of the wind turbine industry 1.3 Background 1.4 Advantages of wind energy 1.5 Challenges facing the wind turbine industry 1.6 The potential of wind energy worldwide References 2 History of harnessing wind power 2.1 Introduction 2.2 Wind machines in antiquity 2.3 Islamic civilization windmills 2.4 Medieval European windmills 2.5 Aegean and Mediterranean windmills 2.6 Dutch and European windmills 2.7 The American windmill 2.8 Historical developments 2.9 Windmills applications 2.10 Discussion References B. Wind resource and wind energy 3 Wind power fundamentals 3.1 Wind physics basics: what is wind and how wind is generated 3.2 Wind types: a brief overview of wind power meteorology 3.3 Fundamental equation of wind power: kinetic energy flux and wind power density 3.4 Wind power capture: efficiency in extracting wind power 3.5 Conclusion References 4 Estimation of wind energy potential and prediction of wind power 4.1 Introduction 4.2 Principles for successful development for a wind assessment program 4.3 Main aspects of a wind assessment program 4.4 Estimating wind power based on wind speed measurements 4.5 Wind resource estimation project; scope and methods 4.6 Further considerations for wind speed assessment 4.7 Wind speed and power forecasting 4.8 Conclusions References 5 Global potential for wind-generated electricity 5.1 Introduction 5.2 Methodology 5.3 Results 5.3.1 Global perspective 5.3.2 US perspective 5.3.3 China perspective 5.4 Concluding remarks Acknowledgments References 6 Achieving carbon neutrality: the future of wind energy development in China 6.1 Introduction 6.2 Wind energy development in China 6.2.1 Overview 6.2.2 Electricity market and wind energy market in China 6.2.2.1 Electricity market and wind energy market 6.2.2.2 Key players in the wind energy market in China 6.2.2.2.1 Wind energy developers 6.2.2.2.2 Wind turbine manufacturers 6.2.2.2.3 The central government 6.2.2.2.4 The local governments 6.2.2.2.5 Grid companies 6.3 Wind energy development in China: barriers and drivers 6.3.1 Barriers to wind energy development in China 6.3.1.1 Overcapacity in nonrenewable power plants 6.3.1.2 Wind curtailment 6.3.1.3 Poor grid connectivity 6.3.1.4 Lack of a well-functioned ancillary service market 6.3.1.5 Lack of demand response and energy storage 6.3.1.6 Differential priorities between the central government and the local governments 6.3.1.7 Vested interests between coal companies and the government 6.3.2 Drivers of wind energy development in China 6.3.2.1 Energy coordination 6.3.2.2 Coal-fired power plants retrofit and energy storage 6.3.2.3 Smart demand response 6.3.2.4 Emerging ancillary service market 6.3.2.5 Carbon trading and carbon reduction target 6.4 The future of wind energy development in China 6.4.1 Distributed generation deployment and proactive transmission planning 6.4.2 Offshore wind power planning 6.4.3 Smart grid 6.4.4 Merit-order-based dispatch 6.5 Conclusion Acknowledgment References 7 Vertical wind speed profiles in atmospheric boundary layer flows 7.1 Introduction 7.2 Diversity of wind speed profiles 7.3 Similarity theory 7.3.1 Logarithmic law of the wall 7.3.2 Monin–Obukhov similarity theory 7.3.3 Extension of Monin–Obukhov similarity theory 7.3.4 Geostrophic drag laws 7.4 Empirical formulations 7.4.1 Power law 7.4.2 Profiles for strong winds 7.5 Concluding remarks Acknowledgments References C. Wind turbine technology 8 Wind turbine technologies 8.1 Introduction 8.2 Overview of wind turbine components 8.2.1 Aerodynamic rotor 8.2.2 Transmission system 8.2.3 Generator 8.2.3.1 Synchronous generator 8.2.3.2 Asynchronous (induction) generator 8.2.4 Power electronic interface 8.2.5 Control system and wind turbine control capabilities 8.3 Contemporary wind turbine technologies 8.3.1 Fixed-speed wind turbines (Type 1) 8.3.2 Limited variable speed wind turbines (Type 2) 8.3.3 Variable speed wind turbines with partial scale power converter (Type 3) 8.3.4 Variable speed wind turbines with full-scale power converter (Type 4) 8.4 Conclusions References 9 Small-scale wind turbines 9.1 The fundamental concern for micro-wind: the wind resource 9.1.1 Building-mounted turbines 9.2 Rural building mounted turbine 9.3 Suburban building mounted turbine 9.4 Urban building mounted turbine 9.5 Summary findings: building mounted turbines 9.6 Field trial observations: pole mounted turbines 9.7 The future for micro-wind 9.8 Conclusions Acknowledgments References 10 Civil engineering aspects of a wind farm and wind turbine structures 10.1 Energy challenge 10.2 Wind farm and Fukushima nuclear disaster 10.2.1 Case study: performance of near-shore wind farm during 2012 Tohoku earthquake 10.2.1.1 Why did the wind farm stand up? 10.3 Wind farm site selection 10.3.1 Case studies: Burbo wind farm (see Fig. 10.6 for location) 10.3.2 ASIDE on the economics 10.4 General arrangement of a wind farm 10.5 Choice of foundations for a site 10.6 Foundation types 10.7 Gravity-based foundation system 10.8 Suction buckets or caissons 10.9 Pile foundations 10.10 Seabed frame or jacket supporting supported on pile or caissons 10.11 Floating turbine system 10.12 Site layout, spacing of turbines, and geology of the site 10.12.1 Case study: Westermost Rough 10.13 Economy of scales for foundation References 11 Aerodynamics and the design of horizontal axis wind turbine 11.1 Introduction 11.2 A short description on how a wind turbine works 11.3 1-D momentum equations 11.4 Blade element momentum 11.4.1 The blade element momentum method 11.5 Use of steady blade element momentum method 11.6 Aerodynamic blade design 11.7 Unsteady loads and fatigue 11.8 Brief description of design process References 12 Civil engineering challenges associated with design of offshore wind turbines with special reference to China 12.1 Offshore wind potential in China 12.2 Dynamic sensitivity of offshore wind turbine structures 12.3 Dynamic issues in support structure design 12.3.1 Importance of foundation design 12.4 Types and nature of the loads acting on the foundations 12.4.1 Loads acting on the foundations 12.4.2 Extreme wind and wave loading conditions in Chinese waters 12.4.2.1 Case study: Typhoon-related damage to wind turbines in China 12.4.3 Wave condition 12.5 Ground conditions in Chinese waters 12.5.1 Bohai Sea 12.6 Seismic effects 12.7 A note on serviceability limit state design criteria 12.7.1 An example of a method to predict the required foundation stiffness 12.8 Challenges in analysis of dynamic soil-structure interaction 12.9 Foundation design 12.9.1 Challenges in monopile foundation design and installation 12.9.2 Jacket on flexible piles 12.10 Concluding remarks References 13 Numerical methods for soil-structure interaction analysis of offshore wind turbine foundations 13.1 Introduction 13.1.1 Need for numerical analysis for carrying out the design 13.2 Types of numerical analysis 13.2.1 Standard method based on beam on nonlinear Winkler spring 13.2.2 Advanced analysis (finite element analysis & discrete element modeling) to study foundation-soil interaction 13.2.2.1 Different soil models used in finite element analysis 13.2.2.2 Discrete element model analysis basics 13.3 Example application of numerical analysis to study soil-structure interaction of monopile 13.3.1 Monopile analysis using discrete element method 13.3.2 Monopile analysis using FEM using ANSYS software References 14 Reliability of wind turbines 14.1 Introduction 14.2 Fundamentals 14.2.1 Terminology 14.2.1.1 Reliability 14.2.1.2 Metrics 14.2.2 Taxonomy 14.2.3 Failure types 14.3 Current status 14.4 Reliability engineering 14.4.1 Data collection 14.4.2 Model development 14.4.3 Forecasting 14.5 Case studies 14.5.1 Gearbox spares planning 14.5.2 Pitch bearing maintenance scheduling 14.6 Conclusions Acknowledgments References 15 Practical method to estimate foundation stiffness for design of offshore wind turbines 15.1 Introduction 15.2 Methods to estimate foundation stiffness 15.2.1 Simplified method (closed form solutions) 15.2.2 Standard method 15.2.3 Advanced method 15.3 Obtaining foundation stiffness from standard and advanced method 15.4 Example problem [monopile for Horns Rev 1] 15.4.1 Elastic-plastic formulation 15.4.2 API formulation 15.5 Discussion and application of foundation stiffness 15.5.1 Pile head deflections and rotations 15.5.1.1 Elastic-plastic 15.5.1.2 API formulation 15.5.2 Prediction of the natural frequency 15.5.3 Comparison with SAP 2000 analysis Nomenclature References 16 Physical modeling of offshore wind turbine model for prediction of prototype response 16.1 Introduction 16.1.1 Complexity of external loading conditions 16.1.2 Design challenges 16.1.3 Technical review/appraisal of new types of foundations 16.1.4 Physical modeling for prediction of prototype response 16.2 Physical modeling of offshore wind turbines 16.2.1 Dimensional analysis 16.2.2 Definition of scaling laws for investigating offshore wind turbines 16.3 Scaling laws for offshore wind turbines supported monopiles 16.3.1 Monopile foundation 16.3.2 Strain field in the soil around the laterally loaded pile 16.3.3 Cyclic stress ratio in the soil in the shear zone 16.3.4 Rate of soil loading 16.3.5 System dynamics 16.3.6 Bending strain in the monopile 16.3.7 Fatigue in the monopile 16.3.8 Example of experimental investigation for studying the long-term response of 1–100 scale offshore wind turbine 16.4 Scaling laws for offshore wind turbines supported on multipod foundations 16.4.1 Typical experimental setups and results 16.5 Conclusions References 17 Seismic design and analysis of offshore wind turbines 17.1 Introduction 17.2 Methodology of design for bottom fixed offshore and nearshore wind farms 17.2.1 Ground motion selection 17.2.2 Site response analysis 17.2.3 Soil-structure interaction 17.2.4 Identification of liquefiable or strain softening layers 17.2.5 Load utilization ratio analysis 17.2.6 Plotting the moment (MR) and lateral (HR) resisting capacity curve in liquefiable and nonliquefiable soil 17.2.7 Examples of the moment and lateral resisting capacity curve in liquefiable soil 17.2.8 Analysis of soil settlement postliquefaction 17.2.9 An example of 15MW NREL wind turbine on jacket and monopile foundations 17.2.9.1 Soil profile and site response analysis 17.2.9.2 Loads 17.2.9.2.1 Earthquake loads 17.2.9.2.2 Wind and wave loads 17.2.9.3 Soil-structure interaction analysis 17.3 Methodology of analyzing floating wind turbines 17.3.1 Employed Modeling Details Summary References 18 Seismic hazards associated with offshore wind farms 18.1 Introduction 18.2 Seismic hazard of bottom fixed offshore wind turbines 18.2.1 Liquefaction and possible hazards 18.2.2 Tsunami 18.2.3 Example of deterministic seismic hazard analysis of Gujarat Coast, India [56] 18.3 Seismic hazards of floating offshore wind farms 18.3.1 Fault rupture 18.3.2 Submarine landslide 18.3.3 Tsunami 18.3.4 Liquefaction 18.4 Miscellaneous hazards 18.4.1 Blade collision during a seismic event 18.4.2 Electrical cables failure 18.5 Summary of demands of offshore wind turbines References 19 Some challenges and opportunities around lifetime performance and durability of wind turbines 19.1 Introduction 19.2 Fatigue, repowering, and repurposing 19.2.1 Fatigue 19.2.2 Repowering 19.2.3 Repurposing 19.3 Scour aspects 19.4 Degradation aspects 19.5 Monitoring aspects 19.6 Understanding uncertainties 19.7 Conclusions References 20 A review of wind power in grid codes: current state and future challenges 20.1 Introduction 20.1.1 Near horizon overview of power systems 20.1.2 Grid code 20.1.3 Challenges in modern power systems 20.1.4 Promising technologies for modern power systems 20.2 Wind power in European grid codes 20.2.1 European network codes development 20.2.2 Structure and characteristics of network code requirements 20.2.3 Grid code compliance—general aspects 20.2.4 RfG by countries 20.3 Wind power performance requirements in North America 20.3.1 Federal energy regulatory commission 20.3.1.1 Wind generation interconnection requirements 20.3.1.2 Incentives to support the grid reliability 20.3.2 Electric reliability organization 20.3.3 Transmission owner 20.3.4 Future standards 20.4 Future grid code challenges Acknowledgements References 21 Intelligent design and optimization of wind turbines 21.1 Introduction 21.2 Intelligent design and optimization methods for wind turbines 21.2.1 Supervised learning-based methods 21.2.2 Unsupervised learning-based methods 21.2.3 Reinforcement learning-based methods 21.3 Intelligent design and optimization applications for wind turbines 21.3.1 Blades 21.3.2 Towers 21.3.3 Generators 21.3.4 Other mechanical and electrical components 21.4 Conclusions Acknowledgments Nomenclacture References 22 Wind and hybrid power systems: reliability-based assessment 22.1 Introduction 22.2 Wind power systems 22.2.1 Stochastic modeling of wind power 22.2.2 Reliability-based assessment 22.3 Hybrid power systems 22.4 Concluding remarks References 23 Multifidelity simulation tools for modern wind turbines 23.1 Introduction 23.2 Blade aerodynamics 23.3 Rotor aerodynamics 23.4 Rotor blades’ structural dynamics for aeroelasticity 23.5 Concluding remarks References 24 Wind turbine supporting tower structural health monitoring and vibration control 24.1 Introduction 24.2 Dynamic response of wind turbine tower under severe environmental conditions 24.2.1 Analysis of wind turbine under tornado 24.2.2 Structural response of wind turbine to downburst 24.2.3 Seismic response of wind turbine tower 24.3 Wind turbine tower testing technique and structural health monitoring 24.3.1 Noncontact vibration measurement methods for wind turbine tower 24.3.2 Modal parameter identification of wind turbine tower 24.3.3 Damping identification and aerodynamic damping of wind turbine in operation for seismic analysis 24.4 Vibration control of wind turbine tower 24.4.1 Effect of soil-structure interaction on the design of tuned mass dampers 24.4.2 Novel vibration control system for wind turbine tower 24.5 Summary References 25 Innovative foundation design for offshore wind turbines 25.1 Introduction 25.2 Need for new types of foundations 25.3 Inspiration for hybrid foundations 25.4 Hybrid monopile foundation concept 25.5 Verification and validation 25.5.1 Validation step 1: numerical models validation via centrifuge test 25.5.1.1 Comparison against the centrifuge tests of Wang et al. [1] 25.5.2 Validation step 2 experiment evaluation 25.5.2.1 1-g testing 25.5.2.2 Load utilization framework 25.5.2.3 Test preparation 25.6 Steps to set up numerical model for hybrid monopile 25.6.1 Parametric study 25.6.2 Soil profile 25.6.3 Numerical results 25.7 Further application of hybrid foundation study 25.7.1 Retrofitting of existing monopiles 25.8 Discussion and conclusions References Further reading 26 Gravity-based foundation for offshore wind turbines 26.1 Introduction to gravity-based foundations 26.1.1 Advantages and challenges of the gravity-based structure system 26.1.2 Shapes and sizes 26.2 Load and design consideration 26.2.1 Load combination 26.2.2 Limit state design considerations 26.3 Sizing of gravity-based structure based on ultimate limit state and the effective area method 26.3.1 Converting (V, M, H) loading into (V, H) loading through an effective area approach 26.4 Tower–gravity-based structure connection 26.4.1 Check for sliding resistance 26.4.2 Work example for a gravity-based structure supporting 5MW turbine 26.4.3 Loads on the foundation 26.4.4 Vertical load 26.4.5 Initial dimensions and ballast load 26.4.5.1 Base of the tower 26.4.6 Calculation of ballast needed 26.4.7 Ultimate geotechnical capacity 26.4.8 Check for sliding resistance 26.4.9 Foundation stiffness 26.5 Summary References D. Storing energy 27 Greenhouse gas emissions from storing energy from wind turbines 27.1 The need for storage 27.1.1 Key characteristics for storage 27.1.2 Which lithium-ion chemistry should be used in grid storage? 27.1.3 Published literature data survey and review for lithium-ion electrical energy storage 27.1.4 The case for considering use phase 27.1.4.1 GHG emissions associated with storing wind 27.1.5 Net energy analysis of storing and curtailing wind resources 27.2 Conclusion References E. Environmental impacts of wind energy 28 Climate change effects on offshore wind turbines 28.1 Introduction and background 28.1.1 Rising temperatures, changing times 28.2 Climate models 28.2.1 Comparison of CMIP5 and CMIP6 models 28.3 Impact of climate change on offshore wind turbines 28.3.1 Wind speed 28.3.2 Sea ice 28.3.3 Ice accretion 28.4 Case studies 28.4.1 European region 28.4.2 Indian Ocean region References Further reading 29 Life cycle assessment: a meta-analysis of cumulative energy demand and greenhouse gas emissions for wind energy technologies 29.1 Introduction 29.2 Wind energy technologies 29.2.1 Rotor 29.2.1.1 Hub 29.2.1.2 Blades 29.2.2 Nacelle 29.2.2.1 Gearing and generator 29.2.2.2 Foundation and cover 29.2.3 Tower 29.2.4 Foundation 29.2.5 Balance of system 29.2.6 Operation and maintenance 29.2.7 Disposal 29.3 Life-cycle assessment 29.3.1 Cumulative energy demand 29.3.2 Carbon footprint 29.3.3 Energy return on investment 29.3.4 Carbon return on investment 29.3.5 Energy payback time 29.3.6 Carbon payback time 29.3.7 Fractional electricity reinvestment 29.3.8 Fractional carbon emissions 29.4 Meta-analysis 29.4.1 Literature search 29.4.2 Literature screening 29.5 Results and discussion 29.5.1 Capital energy costs 29.5.2 Capital carbon costs 29.5.3 Life-cycle energy costs 29.5.4 Life-cycle carbon costs 29.5.5 Components 29.5.6 Trends in parameters 29.5.7 Net energy trajectory of the global wind industry 29.5.8 Net carbon trajectory of the global wind industry 29.6 Conclusions Acknowledgments Appendix A: Meta-analysis results Appendix B: Contribution per component References 30 Wind turbines and landscape 30.1 A passion for landscape 30.2 What is landscape? 30.3 Changing landscape 30.3.1 People’s opinions 30.4 Technological advancement 30.5 The perception of wind farms 30.5.1 Height and size 30.5.2 Composition 30.5.3 Movement 30.6 Landscapes with power generation objects 30.7 What are the effects of wind farms on our landscape? 30.7.1 Landscape effects 30.7.2 Visual effects 30.7.3 Landscape and visual effects 30.8 Mitigation 30.8.1 Strategic approach 30.9 Conclusion References 31 Turbulent-boundary-layer trailing-edge noise reduction technologies including porous materials 31.1 Noise sources in a wind turbine 31.2 Noise reduction technologies 31.2.1 Characterization of the porous materials 31.2.2 From porous foams to innovative metamaterials 31.3 Conclusions References 32 Global rare earth supply, life cycle assessment, and wind energy 32.1 Background of rare earth elements 32.2 Global rare earth elements supply 32.3 Rare earth elements permanent magnets 32.4 Life cycle assessment of the use of rare earth elements magnets in wind turbines 32.5 Global wind energy projections 32.6 Implications for future rare earth elements supply 32.7 Conclusion References 33 Short-term power prediction and downtime classification 33.1 Introduction 33.2 Wind turbine data 33.3 Downtime detection 33.4 Data preprocessing 33.5 Understanding classification 33.6 Statistical wind power forecasting modeling for short-term forecasting 33.6.1 Time series analysis models 33.6.2 Artificial intelligence models 33.6.3 Other models 33.7 Downtime detection and classification 33.8 Conclusions References F. Economics of wind energy and certification issues 34 Levelized cost of energy (UK offshore wind power) drivers, challenges, opportunities and practice 2010–20 34.1 Offshore wind power and climate change 34.2 Levelized cost of energy 34.3 Levelized cost of energy and the systems theory of management 34.4 Trends in levelized cost of energy trends 2010–20 34.5 The supra-system 34.5.1 Enabling environment legal 34.5.2 The Energy Act 2008 34.5.3 The Energy Act 2011 34.5.4 Electricity market reform 34.5.5 2012–20 34.5.6 2020–30 34.5.7 2030–50 34.5.8 The Energy Act 2013 34.5.9 The Energy Act 2016 34.5.10 Policy instruments 34.5.10.1 Electricity market reform 34.5.11 Maximizing economic recovery strategy for the United Kingdom 34.5.12 Legal instruments 34.5.13 Political intent 34.5.14 Procurement environment and its changes 34.5.15 Engineering procurement and construction contract 34.5.16 Multicontracting 34.5.17 New engineering contract 34.5.18 Developments in project financing 34.5.19 Power purchase agreements 34.5.20 Contract for difference 34.5.21 Strike price 34.5.22 Technological developments 34.5.23 Changes in rotor blades 34.5.24 Operation and maintenance—subsea 34.5.25 Developments in turbine design 34.5.26 Developments in generator design 34.5.27 Sympathetic industries 34.5.28 Foundations and changes in foundation designs 34.5.29 Offshore wind farm foundations 34.5.30 Offshore wind farm foundations and installations 34.5.31 Offshore wind farm foundations and loads 34.5.32 Case studies in offshore wind energy 34.5.33 Dogger bank wind farm 34.5.34 Foundations 34.5.35 Contract for difference 34.5.36 Power purchase agreement 34.5.37 Dogger bank and technology 34.5.38 Dogger bank and levelized cost of energy 34.6 Discussion 34.6.1 The legal environment 34.6.2 The commercial environment 34.6.3 The technological environment 34.6.4 The transformational unit in the supra-system References 35 Certification of new foundations for offshore wind turbines 35.1 Need for new types of foundations for offshore wind farm development 35.2 De-risking of foundation based on technology readiness level 35.3 What does technology readiness level 3 and 4 constitute in the context of foundation design 35.3.1 Requirements of foundation testing for offshore wind turbine foundations 35.4 Steps in the design of physical modeling 35.5 A novel test set-up for technology readiness level studies 35.5.1 To characterizing the dynamics features of the system (modes of vibration) 35.6 Long-term serviceability limit state tests 35.7 Technology readiness level example from gravity based structures 35.7.1 Technology readiness level testing 35.8 Technology readiness level example from monopile 35.9 Technology readiness level example for hybrid foundation 35.9.1 Prototype response 35.10 Concluding remarks Appendix-A List of projects References Index Back Cover