ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Wind and Solar Power Systems: Design, Analysis, and Operation

دانلود کتاب سیستم های انرژی بادی و خورشیدی: طراحی، تحلیل و بهره برداری

Wind and Solar Power Systems: Design, Analysis, and Operation

مشخصات کتاب

Wind and Solar Power Systems: Design, Analysis, and Operation

ویرایش: [3 ed.] 
نویسندگان:   
سری:  
ISBN (شابک) : 9780367476939, 9781003042952 
ناشر:  
سال نشر: 2021 
تعداد صفحات: [406] 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 10 Mb 

قیمت کتاب (تومان) : 43,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 4


در صورت تبدیل فایل کتاب Wind and Solar Power Systems: Design, Analysis, and Operation به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب سیستم های انرژی بادی و خورشیدی: طراحی، تحلیل و بهره برداری نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب سیستم های انرژی بادی و خورشیدی: طراحی، تحلیل و بهره برداری




توضیحاتی درمورد کتاب به خارجی

\"This book provides technological and socio-economic coverage of renewable energy. It discusses wind power technologies, solar photovoltaic technologies, large-scale energy storage technologies, and ancillary power systems. In this new edition, the book addresses advancements that have been made in renewable energy: grid-connected power plants, power electronics converters, and multi-phase conversion systems. The text has been revised to include up-to-date material, statistics, and current technology trends. Three new chapters have been added to cover turbine generators, AC and DC wind systems, and solar power conversion. Discusses additional renewable energy sources, such as ocean, special turbines, etc., Covers system integration for solar and wind energy. Presents emerging DC wind systems. Includes coverage on turbine generators. Updated sections on solar power conversion. It offers students, practicing engineers, and researchers a comprehensive look at wind and solar power technologies. It is designed as a reference and can serve as a textbook for senior undergraduates in a one-semester course on renewable power or energy systems\"--



فهرست مطالب

Cover
Half Title
Title Page
Copyright Page
Dedication
Table of Contents
Preface
Acknowledgements
Author Biographies
List of Abbreviations and Conversion of Units
Glossary
Part A: Wind Power Systems
	Chapter 1: Introduction
		1.1 Industry Overview
		1.2 History of Renewable Energy Development
		1.3 Utility Perspective
			1.3.1 Modularity for Growth
		Further Reading
	Chapter 2: Wind Power
		2.1 Wind Power in the World
		2.2 U.S. Wind Power Development
		References
	Chapter 3: Wind Speed and Energy
		3.1 Speed and Power Relations
		3.2 Power Extracted From the Wind
		3.3 Rotor-Swept Area
		3.4 Air Density
		3.5 Wind Speed Distribution
			3.5.1 Weibull Probability Distribution
			3.5.2 Mode and Mean Speeds
			3.5.3 Root Mean Cube Speed
			3.5.4 Mode, Mean, and RMC Speeds
			3.5.5 Energy Distribution
			3.5.6 Digital Data Processing
			3.5.7 Effect of Hub Height
			3.5.8 Importance of Reliable Data
		3.6 Wind Speed Prediction
		References
	Chapter 4: Wind Power Systems
		4.1 System Components
			4.1.1 Tower
			4.1.2 Turbine
			4.1.3 Blades
			4.1.4 Speed Control
		4.2 Turbine Rating
		4.3 Power vs. Speed and TSR
		4.4 Maximum Energy Capture
		4.5 Maximum Power Operation
			4.5.1 Constant-TSR Scheme
			4.5.2 Peak-Power-Tracking Scheme
		4.6 System-Design Trade-Offs
			4.6.1 Turbine Towers and Spacing
			4.6.2 Number of Blades
			4.6.3 Rotor Upwind or Downwind
			4.6.4 Horizontal vs. Vertical Axis
		4.7 System Control Requirements
			4.7.1 Speed Control
			4.7.2 Rate Control
		4.8 Environmental Aspects
			4.8.1 Audible Noise
			4.8.2 Electromagnetic Interference (EMI)
			4.8.3 Effects on Birds
			4.8.4 Other Impacts
		4.9 Potential Catastrophes
			4.9.1 Fire
			4.9.2 Earthquake
		4.10 System-Design Trends
		References
	Chapter 5: Electrical Generators
		5.1 Turbine Conversion Systems
		5.2 Synchronous Generator
			5.2.1 Equivalent Circuit
			5.2.2 Synchronous Generators in Wind Turbines
		5.3 Induction Generator
			5.3.1 Construction
			5.3.2 Working Principle
			5.3.3 Rotor Speed and Slip
			5.3.4 Equivalent Circuit
			5.3.5 Efficiency and Cooling
			5.3.6 Self-Excitation Capacitors
			5.3.7 Torque-Slip Characteristic
			5.3.8 Transients
		5.4 Doubly Fed Induction Generator
		5.5 Direct-Driven Generator
		5.6 Unconventional Generators
		5.7 Multiphase Generators
		References
	Chapter 6: Generator Drives
		6.1 Speed Control Regions
		6.2 Generator Drives
			6.2.1 One Fixed-Speed Drive
			6.2.2 Two Fixed-Speed Drive
			6.2.3 Variable-Speed Gear Drive
		6.3 Drive Selection
		6.4 Cutout Speed Selection
		References
	Chapter 7: Offshore Wind Farms
		7.1 Environmental Impact
		7.2 Ocean Water Composition
		7.3 Wave Energy and Power
		7.4 Ocean Structure Design
			7.4.1 Forces On Ocean Structures
		7.5 Corrosion
		7.6 Foundation
			7.6.1 Monopile
			7.6.2 Gravitation
			7.6.3 Tripod
		7.7 Materials
		7.8 Maintenance
		References
	Chapter 8: AC Wind Systems
		8.1 Overview
		8.2 Wind Turbine and Wind Farm Components
		8.3 System Analyses
		8.4 Challenges
		References
	Chapter 9: DC Wind Systems
		9.1 Making a Case for All-DC Wind System
		9.2 Overview
		9.3 All-DC System Components
			9.3.1 DC-DC Converters
			9.3.2 Generator System
			9.3.3 Multileg Rectifier
		9.4 System Analyses
		9.5 Variable Voltage DC Collector Grid
		References
Part B: Photovoltaic Power Systems
	Chapter 10: Photovoltaic Power
		10.1 Building-Integrated PV System
		10.2 PV Cell Technologies
			10.2.1 Single-Crystalline Silicon
			10.2.2 Polycrystalline and Semicrystalline Silicon
			10.2.3 Thin-Film Cell
			10.2.4 Amorphous Silicon
			10.2.5 Spheral Cell
			10.2.6 Concentrator Cell
			10.2.7 Multijunction Cell
			10.2.8 Inverted Metamorphic Multijunction (IMM) Cell
		References
	Chapter 11: Photovoltaic Power Systems
		11.1 PV Cell
		11.2 Module and Array
		11.3 Equivalent Electrical Circuit
		11.4 Open-Circuit Voltage and Short-Circuit Current
		11.5 I-V and P-V Curves
		11.6 Array Design
			11.6.1 Sun Intensity
			11.6.2 Sun Angle
			11.6.3 Shadow Effect
			11.6.4 Temperature Effects
			11.6.5 Effect of Climate
			11.6.6 Electrical Load Matching
			11.6.7 Sun Tracking
		11.7 Peak-Power Operation
		11.8 System Components of Stand-Alone System
		References
	Chapter 12: Solar Power Conversion Systems
		12.1 Overview
		12.2 Solar Powetr Electronics Systems
			12.2.1 Solar Conversion Architecture
			12.2.2 An Off-Grid Solution
			12.2.3 System Characteristics
		12.3 Challenges
		12.4 Trend And Future
		References
Part C: System Integration
	Chapter 13: Energy Storage
		13.1 Battery
		13.2 Types of Battery
			13.2.1 Lead-Acid
			13.2.2 Nickel-Cadmium
			13.2.3 Nickel-Metal Hydride
			13.2.4 Lithium-Ion
			13.2.5 Lithium-Polymer
			13.2.6 Zinc-Air
		13.3 Equivalent Electrical Circuit
		13.4 Performance Characteristics
			13.4.1 C/D Voltages
			13.4.2 C/D Ratio
			13.4.3 Energy Efficiency
			13.4.4 Internal Resistance
			13.4.5 Charge Efficiency
			13.4.6 Self-Discharge And Trickle-Charge
			13.4.7 Memory Effect
			13.4.8 Effects of Temperature
			13.4.9 Internal Loss and Temperature Rise
			13.4.10 Random Failure
			13.4.11 Wear-Out Failure
			13.4.12 Battery Types Compared
		13.5 More on Lead-Acid Battery
		13.6 Battery Design
		13.7 Battery Charging
		13.8 Charge Regulators
			13.8.1 Multiple Charge Rates
			13.8.2 Single-Charge Rate
			13.8.3 Unregulated Charging
		13.9 Battery Management
			13.9.1 Monitoring and Controls
			13.9.2 Safety Considerations
		13.10 Flywheel
			13.10.1 Energy Relations
			13.10.2 Flywheel System Components
			13.10.3 Benefits of Flywheel Over Battery
		13.11 Superconducting Magnet
		13.12 Compressed Air
		13.13 Technologies Compared
		13.14 More On Lithium-Ion Battery
		References
	Chapter 14: Power Electronics
		14.1 Basic Switching Devices
		14.2 AC–DC Rectifier
		14.3 DC–AC Inverter
		14.4 IGBT/MOSFET-Based Converters
		14.5 Control Schemes
			14.5.1 SPWM
			14.5.2 Square Wave
		14.6 Multilevel Converters
		14.7 HVDC Converters
		14.8 Matrix Converters
		14.9 Cycloconverter
		14.10 Grid Interface Controls
			14.10.1 Voltage Control
			14.10.2 Frequency Control
		14.11 Battery Charge/Discharge Converters
			14.11.1 Battery Charge Converter
			14.11.2 Battery Discharge Converter
		14.12 Power Shunts
		References
	Chapter 15: Stand-Alone Systems
		15.1 PV Stand-Alone
		15.2 Electric Vehicle
		15.3 Wind Stand-Alone
		15.4 Hybrid Systems
			15.4.1 Hybrid with Diesel
			15.4.2 Hybrid with Fuel Cell
			15.4.3 Mode Controller
			15.4.4 Load Sharing
		15.5 System Sizing
			15.5.1 Power and Energy Estimates
			15.5.2 Battery Sizing
			15.5.3 PV Array Sizing
		15.6 Wind Farm Sizing
		References
	Chapter 16: Grid-Connected Systems
		16.1 Interface Requirements
		16.2 Synchronizing with the Grid
			16.2.1 Inrush Current
			16.2.2 Synchronous Operation
			16.2.3 Load Transient
			16.2.4 Safety
		16.3 Operating Limit
			16.3.1 Voltage Regulation
			16.3.2 Stability Limit
		16.4 Energy Storage and Load Scheduling
		16.5 Utility Resource Planning Tools
		16.6 Wind Farm–Grid Integration
		16.7 Grid Stability Issues
			16.7.1 Low-Voltage Ride-Through
			16.7.2 Energy Storage for Stability
		16.8 Distributed Power Generation
		References
	Chapter 17: Electrical Performance
		17.1 Voltage Current and Power Relations
		17.2 Component Design for Maximum Efficiency
		17.3 Electrical System Model
		17.4 Static Bus Impedance and Voltage Regulation
		17.5 Dynamic Bus Impedance and Ripples
		17.6 Harmonics
		17.7 Quality of Power
			17.7.1 Harmonic Distortion Factor
			17.7.2 Voltage Transients and Sags
			17.7.3 Voltage Flickers
			17.7.4 Harmonics Elimination with Passive Filters
			17.7.5 Harmonics Elimination with Active Filters
		17.8 Renewable Capacity Limit
			17.8.1 System Stiffness
			17.8.2 Interfacing Standards
		17.9 Lightning Protection
		References
	Chapter 18: Plant Economy
		18.1 Energy Delivery Factor
		18.2 Initial Capital Cost
		18.3 Availability and Maintenance
		18.4 Energy Cost Estimates
		18.5 Sensitivity Analysis
			18.5.1 Effect of Wind Speed
			18.5.2 Effect of Tower Height
		18.6 Profitability Index
		18.7 Project Finance
		References
	Chapter 19: The Future
		19.1 World Electricity to 2050
		19.2 Future of Wind Power
		19.3 PV Future
		19.4 Declining Production Cost
		19.5 Market Penetration
		References
Part D: Ancillary Power Technologies
	Chapter 20: Solar Thermal System
		20.1 Energy Collection
			20.1.1 Parabolic Trough
			20.1.2 Central Receiver
			20.1.3 Parabolic Dish
		20.2 Solar-II Power Plant
		20.3 Synchronous Generator
			20.3.1 Equivalent Electrical Circuit
			20.3.2 Excitation Methods
			20.3.3 Electric Power Output
			20.3.4 Transient Stability Limit
		20.4 Commercial Power Plants
		20.5 Recent Trends
		References
	Chapter 21: Ancillary Power Systems
		21.1 Heat-Induced Wind Power
		21.2 Marine Current Power
		21.3 Ocean Wave Power
		21.4 Jet-Assisted Wind Turbine
		21.5 Bladeless Wind Turbines
		21.6 Solar Thermal Microturbine
		21.7 Thermophotovoltaic System
		References
Index




نظرات کاربران