دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: روانشناسی ویرایش: نویسندگان: Eric J. Heller سری: ISBN (شابک) : 0691148597, 9780691148595 ناشر: Princeton University Press سال نشر: 2013 تعداد صفحات: 621 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 51 مگابایت
در صورت تبدیل فایل کتاب Why You Hear What You Hear: An Experiential Approach to Sound, Music, and Psychoacoustics به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب چرا آنچه را که می شنوید می شنوید: رویکردی تجربی به صدا، موسیقی و روان آکوستیک نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
چرا می شنوید چه می شنوید اولین کتاب در مورد صدا برای افراد غیرمتخصص است که خوانندگان را با رویکردی عملی و گوش باز که شامل تولید، تجزیه و تحلیل و درک صدا می شود، توانمند می کند. این کتاب درک عمیق شهودی بسیاری از جنبههای صدا را بر خلاف رویکرد معمول توصیف صرف ممکن میسازد. صدها تصویر و مثال اصلی به این هدف کمک می کند، که خواننده می تواند بسیاری از آنها را با استفاده از همان ابزارهای مورد استفاده نویسنده (مانند اپلت های بسیار در دسترس برای رایانه شخصی و مک و نمونه های تعاملی مبتنی بر وب، شبیه سازی ها، بازتولید و تنظیم کند. ابزارهای تجزیه و تحلیل را در وب سایت کتاب پیدا خواهید کرد: Whyyouhearwhatyouhear.com. خوانندگان در موقعیتی قرار می گیرند که با مشارکت در اکتشاف، شهود ایجاد کنند.
این مقدمه واقعاً مترقی برای صدا، موسیقیدانان آماتور و حرفه ای، نوازندگان، معلمان را درگیر می کند و به آنها اطلاع می دهد. مهندسان صدا، دانشجویان بسیاری از رشته های راه راه و در واقع هر کسی که به دنیای شنوایی علاقه مند است. این کتاب از دنبال کردن سفرهای جانبی سرگرم کننده و گاه بحث برانگیز به تاریخ و دنیای آکوستیک دریغ نمی کند و مفاهیم کلیدی را تقویت می کند. شما خواهید دید که چگونه سازهای موسیقی واقعاً کار می کنند. ، چگونه زیر و بمی درک می شود و چگونه می توان صدا را بدون منبع تغذیه خارجی تقویت کرد.
صدا کلید زندگی ما است و در دسترس ترین پورت است. al به جهان ارتعاشی. این کتاب شما را به آنجا می برد.
اولین کتاب در مورد صدا برای ارائه ابزارهای تعاملی، ایجاد درک مفهومی از طریق یک رویکرد تجربی وب سایت تکمیلی (http://www.whyyouhearwhatyouhear.com) جاوا، MAX و دیگر اپلتهای گرافیکی و صوتی رایگان، چند پلتفرمی، تعاملی را ارائه دهید انتخاب گسترده ای از تمرینات اصلی موجود در وب با راه حل نزدیک به 400 تصویر تمام رنگی، بسیاری از شبیه سازی هایی که دانش آموزان می توانند انجام دهندWhy You Hear What You Hear is the first book on sound for the nonspecialist to empower readers with a hands-on, ears-open approach that includes production, analysis, and perception of sound. The book makes possible a deep intuitive understanding of many aspects of sound, as opposed to the usual approach of mere description. This goal is aided by hundreds of original illustrations and examples, many of which the reader can reproduce and adjust using the same tools used by the author (e.g., very accessible applets for PC and Mac, and interactive web-based examples, simulations, and analysis tools will be found on the book's website: whyyouhearwhatyouhear.com. Readers are positioned to build intuition by participating in discovery.
This truly progressive introduction to sound engages and informs amateur and professional musicians, performers, teachers, sound engineers, students of many stripes, and indeed anyone interested in the auditory world. The book does not hesitate to follow entertaining and sometimes controversial side trips into the history and world of acoustics, reinforcing key concepts. You will discover how musical instruments really work, how pitch is perceived, and how sound can be amplified with no external power source.
Sound is key to our lives, and is the most accessible portal to the vibratory universe. This book takes you there.
The first book on sound to offer interactive tools, building conceptual understanding via an experiential approach Supplementary website (http://www.whyyouhearwhatyouhear.com) will provide Java, MAX, and other free, multiplatform, interactive graphical and sound applets Extensive selection of original exercises available on the web with solutions Nearly 400 full-color illustrations, many of simulations that students can doCover Contents Preface How to Use This Book Acknowledgments I: Sound Itself 1 How Sound Propagates 1.1 Push and Pushback: Impedance What Is Impedance, Really? Antireflection Strategies Impedance and the Violin Bullwhip—The High Art of Impedance Matching Impedance Mismatches Are Not Always Bad Impedance of Masses and Springs Together Defining and Measuring Impedance 1.2 Impedance of Air 1.3 Propagation of Sound in Pipes Reflection of Sound at a Closed End Reflection of Sound at an Open End Reflection of Sound at the Junction of Different-diameter Pipes 2 Wave Phenomenology 2.1 Relation between Speed, Frequency, and Wavelength 2.2 Falloff with Distance from the Source Loudness Falloff with Distance Ripple Simulation 2.3 Measuring the Speed of Sound Box 2.1 Father Marin Mersenne 2.4 Interference and Superposition Active Noise Cancellation— Deliberate Destructive Interference 2.5 Reflection Shiny and Matte 2.6 Refraction 2.7 Diffraction Diffraction at an Edge Brush with the Law of Similarity Active Noise Reduction of Diffracted Sound 2.8 Schlieren Photography 2.9 Ray Tracing Corner (Retro-) Reflector Box 2.2 The SOFAR Channel 2.10 Measures of Sound Power Box 2.3 How Big? II: Analyzing Sound #80,582,-5 3 Sound and Sinusoids 3.1 The Atom of Sound Building a Sine Wave 3.2 Sinusoidal Vibration The Velocity The Tuning Fork The Sound of a Sinusoid 3.3 The Pendulum 3.4 The Double Tuning Fork 3.5 Microscopes for Vibration 3.6 Spying on Conversations 3.7 Fourier Decomposition 3.8 Power Spectra 3.9 Periodic Functions 3.10 Aperiodic Signals and Vibrations 4 The Power of Autocorrelation 4.1 Obtaining Autocorrelation Functions Box 4.1 Autocorrelation Example: Temperature in Fairbanks 4.2 Autocorrelation and Power for a Sum of Sinusoids Getting the Autocorrelation Computing the Power Spectrum 4.3 Autocorrelation for Any Signal Computing the Autocorrelation Autocorrelation by Color 4.4 Power Spectrum from a General Autocorrelation Power Spectrum by Color The Wiener-Khinchin Theorem 4.5 The Uncertainty Principle 4.6 Autocorrelation and the Chorus Effect 4.7 Noise and Autocorrelation Autocorrelation and Fast Echoes Masking Signals with Noise Box 4.2 Famous Fourier Transform Pairs 5 Sonograms 5.1 What Is a Sonogram? 5.2 Choosing Sonogram Parameters 6 Capturing and Re-creating Sound 6.1 Galileo—The First Recording? 6.2 Phonautograph—Sound Trace 6.3 Microphones and Loudspeakers 6.4 Sound Reproduction Fidelity The Problem of Head Movement and Visual Concordance The Edison Diamond Disc Phonograph 6.5 Digital Recording and Playback 6.6 Impulse Response and the Re-creation of a Soundspace III Making Sound 8 Making a Stretched String 8.1 Single Bead Tension and Force The Motion of the Bead 8.2 Two Beads Box 8.1 Working with Loaded String The Sinusoid Reigns Supreme 8.3 Three Beads 8.4 Combining Modes 8.5 More Beads The Sound and Spectrum of a Pluck Box 8.2 Spectrum for a Large Number of Beads 8.6 Putting Shape and Time Together 8.7 Combining Modes 8.8 Traveling Waves on the String Standing versus Traveling Waves Fourier Again Ends and Boundaries Box 8.3 Experiment with Loaded String Periodic or Not? 8.9 The Imperfect String Weighted String Real Strings 8.10 Membranes as Stretched Bead-filament Systems 8.11 A Metal Chair 8.12 Decomposing Complex Vibrations Mersenne and Sauveur 9 Resonance Rules 9.1 Resonance and Constructive Interference Proximity Resonance Revisited Equivalent Viewpoints Generalizing Proximity Resonance to Any Constructive Addition Box 9.1 Echoes from Atoms 9.2 Definition of Driven Resonance Remote versus Local Sources: Reciprocity Multiple Sources Autonomous Systems Box 9.2 Resonance and the Divine Harmony 10 Damped and Driven Oscillation 10.1 Friction and Work 10.2 Friction and Decay Kicked Damped Oscillator 10.3 Quality Factor Q Equivalent Definitions of Q 10.4 Driving the Oscillator Frequency of the Driven System 10.5 Resonance Phase of the Drive: Reactive versus Resistive Force Power near Resonance 10.6 Impedance and Forced Oscillation Power, Impedance, and Admittance Oscillator versus Wave Resonance Driving a String 10.7 Coupling of Two or More Oscillators Pure Modes Two Coupled Pendula of Different Frequency 10.8 Tug-of-War: Resonance versus Damping A Physical Model 11 Impulse Response 11.1 Impulse and Power Five Easy Cases Power and Echo 11.2 Average Power Theorem Caveat for Proximity Resonance 11.3 Sculpting a Power Spectrum Echo, Resonance, and Q The Pop of a Cork and Its Echoes Sculpting Principle for Any Signal 12 Impulse and Power for Complex Systems 12.1 Mode Density 12.2 Strength of Isolated Resonances 12.3 Impulse and Power Spectrum in an Open Wedge 12.4 High-Q Resonances: From Isolated to Densely Packed 12.5 Schroeder Frequency Power Fluctuations above the Schroeder Frequency Statistics of the Fluctuations Statistics of the Wedge Spectrum 12.6 Is a Piano Soundboard Resonant? Reverberant, Not Resonant Foiling Short-circuiting 13 Helmholtz Resonators 13.1 How Helmholtz Resonators Work Box 13.1 Deriving the Helmholtz Mode Frequency The Ocarina: Size but Not Shape 13.2 Helmholtz Resonators and the Law of Similarity Higher Modes Ad Hominem Resonators 13.3 Phase and Power Preresonance Postresonance On Resonance 13.4 Resonance and Short-circuiting of Pairs of Resonators 13.5 Helmholtz Resonance Amplification of Sound Resonance and Reciprocity 13.6 Helmholtz Resonators at Work Resonators as Transducers for Sound Ported Loudspeakers Box 13.2 Sound Enhancement in Ancient Greece? Sound Attenuation Helmholtz Bass Traps Your Automobile as a Helmholtz Resonator 14 Sound Generation by Vortices and Turbulence 14.1 Vortex Streets Föppl Vortices Wagging, Shedding, and Sound Generation 14.2 Resonant Vortex Shedding Entrainment Aeolian Harps Big and Small 14.3 Reynolds Number 14.4 Edge Tones 14.5 Whistling—Ring and Slit Vortices Instability and Sensitivity 14.6 What Is Happening in a Lip Whistle? Box 14.1 Experiment: Second Formant Resonance 14.7 Sound from Turbulence Jet Noise Turbulence: Fricatives and Speech Box 14.2 Experiment: Speech Turbulence 14.8 Other Sources of Noise Noise from Tires 15 Membranes and Shells 15.1 Networks of Strings 15.2 Stretched Membranes Box 15.1 Paul Falstad\'s Stretched Membrane Applets 15.3 Vibrations of Plates and Shells 15.4 Chladni and the Era of Modern Acoustics Box 15.2 Chladni and Napoleon 15.5 Baffling and Acoustic Short-circuiting 15.6 Bowing a Metal Plate 15.7 Belleplates 15.8 Kettle Drums 7 Sources of Sound 7.1 Amplification without Active Amplifiers Walls as Passive Amplifiers Reactive versus Resistive Forces 7.2 The Method of Images The 30-degree Wedge 7.3 The Horn Ṣafī al-Dīn Gets It Right in the Thirteenth Century Low-frequency Piston Source Monopole Source in a Pipe Horns as Impedance Control The Mouth of the Horn The Shape of the Horn Box 7.1 The Exponential Horn Speaking Trumpets and Ear Trumpets Box 7.2 Horns through the Ages 7.4 The Siren Software Siren 7.5 Reciprocity of Sound Propagation 7.6 Law of Similarity 7.7 Dipole Sources Dipoles as Acoustical Short-circuiting Dipoles as Destructive Interference Example Dipole Sources Relative Phase of Loudspeakers Simulations of a Dipole Source Baffling a Dipole 7.8 Tuning Fork—A Quadrupole Source 7.9 Supersonic Sources Lightning and Thunder 7.10 Sound Launched by Surfaces Sound Launched by a Baffled Piston Building Up Larger Pistons from Small Ones Force Goes in Phase with Velocity for Larger Pistons 7.11 Sound Launched by Surface-bending Waves Supersonic versus Subsonic Surface Waves The Critical Frequency Sound Radiation Pattern from Surface Waves Box 7.3 Seneca Guns and Cookie Cutters 7.12 Soundboards and Surface Sound Generation Box 7.4 The SST That Never Was 7.13 Thermophones—Sound without Vibration Box 7.5 Sound That Won\'t Leave 7.14 The ( Many) Other Sources of Sound The 95 dB Sun Chips Bag IV: Musical Instruments 16 Wind Instruments 16.1 Propagation of Sound in Pipes—Continued Resonance in Tubes—Colored Echoes Wall Losses Box 16.1 Experiment: Resonance Frequencies and Wall Losses in a Tube 16.2 Frequencies of Tube Modes Cylindrical Bore Tubes The Conical Bore The Inside-out Implosion 16.3 The Trumpet Partials versus Resonances Shaping the Trumpet\'s Timbre and Playing Qualities The Mouthpiece Does Triple Duty The Bell Does Triple Duty Box 16.2 Gatekeeper Resonance Effect The Trouble with Treble Boost Box 16.3 The Horn Function The Battle between Resonance and Wall Friction Power in the Upper Partials—Up or Down When a Bell Is Added? The Lip Reed Understanding Nonlinearities: Benade\'s Water Trumpet Playing the Resonances on a Trumpet Other Factors: Vocal Tract Valves and Intonation The Natural Trumpet 16.4 The Transverse Flute Impedance of a Flute The Flute Cork The Golden Flute 16.5 The Clarinet Register Holes Toneholes 16.6 The Saxophone The Saxophone Mouthpiece 16.7 Blown Closed versus Blown Open Blown Closed Blown Open 16.8 The Importance of Vocal Tract Resonances to Wind Instruments Tract Resonances and Payability Bending Down 17 Voice 17.1 Tubes That Change Diameter or Shape Constriction Yielding a Helmholtz Resonator 17.2 The Source: Vocal Folds 17.3 Formants Getting Q for Your Vocal Tract 17.4 Sayonara Source-filter Model 17.5 Formants and Vowels 17.6 Formant Tuning in Singing Singer\'s Formant 17.7 Multiphonics—Playing Two Notes at Once 17.8 The Speaking Trumpet (Megaphone) Revisited 17.9 Helium and SF6 Voice 17.10 Vocal Disguise, Mimicry, and Gender Switching 17.11 Fricatives and Other Sounds 17.12 Organ Pipe—VoxHumana 18 Violin 18.1 Bowing, Stick-slip, and the Helmholtz Wave The Helmholtz Kink Wave Nonlinear Cooperative Resonance Inharmonic Strings 18.2 The Bridge and the Bridge Hill Impulse on the Front Plate 18.3 Science and the Violin 18.4 Sound Radiation Patterns from a Violin 18.5 Strad or Bust? 18.6 The Helmholtz Air Mode 18.7 The Wolf 18.8 Summary of the Violin 18.9 Nondestructive Modifications Breakdown of the Helmholtz Wave 19 Piano 19.1 The Railsback Curve 19.2 Three Strings per Key 19.3 The Hammer Where Should the Hammer Hit the String? Shape, Mass, and Texture 19.4 Digital Piano 20 Hybrid Musical Instruments 20.1 Stroh Violin 20.2 Aeolian Harp 20.3 Trornba Marina 20.4 Instruments Based on Near-field Capture (NFC) The Marimba 20.5 Applying the NFC Mechanism Savart\'s Cup and Resonator Helmholtz Resonator Enhancement of a Tuning Fork Wind Chimes and the Javanese Angklung Other Hybrid and Unusual Musical Instruments V: Psychoacoustics and Music 21 Mechanisms of Hearing 21.1 Anatomy of the Hearing System 21.2 Outer Ear: Direction Detection Repetition Resonances and Antiresonances (Peaks and Notches) 21.3 Middle Ear: Masterpiece of Impedance Transduction Lever Action 21.4 Inner Ear: Masterpiece of Detection Initial Frequency Sorting Transduction to Nerve ImpuIses Amplification and Sharpening Sending Data to the Auditory Cortex 21.5 The Bionic Ear Box 21.1 Resonance and the Ear 22 Loudness 22.1 Fechner\'s (Weber\'s) Law 22.2 Equal Loudness Curves 22.3 Masking 22.4 Measuring Loudness 23 Pitch Perception 23.1 Overview 23.2 Pitch Is Not Partial 23.3 Pitch Is Not Periodicity 23.4 Pitched Battles 23.5 The Siren 23.6 Ohm\'s Law 23.7 Seebeck\'s Mistake 23.8 Ohm\'s Blunder 23.9 Helmholtz Falls Short 23.10 A Dramatic Residue Pitch Effect Truth or Illusion? 23.11 Autocorrelation and Pitch 23.12 A Simple Formula for Pitch 23.13 Examples: Autocorrelation and Pitch 23.14 Seebeck\'s Pitch Experiments The Marquee Effect 23.15 Shepard Tones Shepard Tones and Autocorrelation 23.16 Chimes: Pitch without a Partial The Hosanna Bell in Freiburg Pitch of a Kettle Drum 23.17 Repetition Pitch Huygens at Chantilly Temple of Kukulkan, Chichén Itzá Ground Reflections 23.18 Quantifying Frequency Cents Just Noticeable Difference (JND) Time or Place? 23.19 Pitch Class, the Octave Ambiguity, and Perfect Pitch 23.20 Parsing and Persistence: Analytic versus Synthetic Hearing 23.21 Deutsch\'s Octave Illusion Pitch and Loudness 23.22 An Extended Definition of Pitch 24 Timbre 480 24.1 Timbre and Phase Shape Depends on Phase Ohm-Helmholtz Phase Law Rationale for Insensitivity to Relative Phase of Harmonic Partials 24.2 Amplitude and Timbre Beats Generalizing the Concept of Beats 24.3 Waveform Beats and the Phase Law 24.4 The Perception of Waveform Beats 24.5 A Dramatic Phase Sensitivity 24.6 Timbre and Context Box 24.1 Helmholtz\'sand Koenig\'s Ingenious Tests of the Ohm-Helmholtz Phase Law 24.7 Timbre, Loudness, and Shock waves 25 Phantom Tones 25.1 Lies and Illusions 25.2 Sounds That Aren\'t There Hearing Phantom Tones 25.3 How and Where Do Phantom Tones Arise? Mechanical Causes Neural Causes and the Auditory Cortex 25.4 Beat Tones Phantom Loudness Beat Tones Examples of Beat Tones 25.5 Nonlinear Harmonic Generation Box 25.1 Experiment in Nonlinear Harmonic Generation Box 25.2 Rudolph Koenig 26 Dissonance and Temperament 26.1 Critical Bands Autodissonance 26.2 Figuring Dissonance 26.3 Helmholtz Theory of Consonance and Dissonance Trouble with 7 and 11? 26.4 The Impossible Perfection of Pythagoras The Perfect Fifth as the Basis for a Musical Scale Another Path to a Musical Scale Pythagorean Just Intonation 26.5 The Pythagorean Comma 26.6 The Circular Musical Scale and the Circle of Fifths The Wolf Fifth 26.7 The Modern Solution: Equal Temperament The Barbershop Seventh—Just versus Equal 26.8 Stretched Scales and Partials—Extreme Tests of Dissonance Theory 26.9 Downshifting Chopin VI: Soundspaces 27 Modern Architectural Acoustics 27.1 Rooms as Resonant Spaces Why Do Surfaces Absorb Sound? Coloring Sound with Walls 27.2 W. C. Sabine and Architectural Acoustics The Right Questions Decay of Reverberations Box 27.1 Sabine\'s Experiments 27.3 Understanding T60 Box 27.2 Deriving the Sabine Reverberation Formula Rectangular Rooms and the Law of Similarity Strength G The Problem of Low Frequencies 27.4 Diffusion by Walls 27.5 Special Shapes Box 27.3 Acoustics of the Mormon Tabernacle 27.6 Auditory Scene 27.7 The Precedence Effect Electronic Enhancement in Concert Halls 27.8 Blind Navigation in Spaces 27.9 Frequency Response of Rooms and Concert Halls Power Spectrum and Mode Density Point-to-point Frequency-dependent Transmission 27.10 Reverberation Timeline 27.11 Best Hall Acoustics 27.12 Acoustical Triumphs and Disasters Boston Symphony Hall Philharmonic Hall, New York Munich Philharmonic 28 Sound Outdoors 28.1 The Battle of Gaines Farm 28.2 Long-range Sound Propagation in the Atmosphere Upwind versus Downwind 28.3 Scintillating Sound 28.4 Echoes The Mystery of the Harmonic Echo Flaws in Rayleigh\'s Arguments Sir William Henry Bragg Gets into the Act Bibliography Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z