دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1st
نویسندگان: Ian Hacking
سری:
ISBN (شابک) : 9781107658158, 9781107723436
ناشر: Cambridge University Press
سال نشر: 2014
تعداد صفحات: 308
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 11 مگابایت
در صورت تبدیل فایل کتاب Why Is There Philosophy of Mathematics At All به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب چرا اصلاً فلسفه ریاضیات وجود دارد نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب واقعاً فلسفی ما را به مبانی بازمی گرداند - تجربه محض اثبات، و رابطه مرموز ریاضیات با طبیعت. این پرسشهای غیرمنتظره را مطرح میکند، مانند "چه چیزی ریاضیات را ریاضیات میسازد؟"، "اثبات از کجا آمده و چگونه تکامل یافته است؟"، و "تمایز بین ریاضیات محض و کاربردی چگونه به وجود آمده است؟" در یک بحث گسترده که هم در گذشته غوطه ور است و هم به طور غیرمعمول با ایده های فلسفی رقیب ریاضیدانان معاصر هماهنگ است، نشان می دهد که اثبات و سایر اشکال کاوش ریاضی همچنان رویه های زنده و در حال تکامل - پاسخگو به فن آوری های جدید، در عین حال تعبیه شده اند. در حقایق دائمی (و حیرت انگیز) در مورد انسان. چندین نوع متمایز از کاربرد ریاضیات را متمایز می کند و نشان می دهد که چگونه هر کدام به یک معمای فلسفی متفاوت منجر می شوند. در اینجا مجموعه قابل توجهی از تفکرات فلسفی جدید در مورد براهین، کاربردها و سایر فعالیت های ریاضی وجود دارد. به تجربه انجام ریاضیات می پردازد با ریاضیات به عنوان جنبه ای از طبیعت انسان برخورد می کند چگونگی به وجود آمدن تمایز بین ریاضیات محض و کاربردی را بررسی می کند
This truly philosophical book takes us back to fundamentals - the sheer experience of proof, and the enigmatic relation of mathematics to nature. It asks unexpected questions, such as 'what makes mathematics mathematics?', 'where did proof come from and how did it evolve?', and 'how did the distinction between pure and applied mathematics come into being?' In a wide-ranging discussion that is both immersed in the past and unusually attuned to the competing philosophical ideas of contemporary mathematicians, it shows that proof and other forms of mathematical exploration continue to be living, evolving practices - responsive to new technologies, yet embedded in permanent (and astonishing) facts about human beings. It distinguishes several distinct types of application of mathematics, and shows how each leads to a different philosophical conundrum. Here is a remarkable body of new philosophical thinking about proofs, applications, and other mathematical activities. Addresses the experience of doing mathematics Treats mathematics as an aspect of human nature Explores how the distinction between pure and applied mathematics came into being
Cover About the Book WHY IS THERE PHILOSOPHY OF MATHEMATICS AT ALL? Copyright © Ian Hacking, 2014 ISBN 978-1-107-05017-4 Hardback ISBN 978-1-107-65815-8 Paperback Dedication Contents Foreword Chapter 1. A cartesian introduction 1 Proofs, applications, and other mathematical activities 2 On jargon 3 Descartes A Application 4 Arithmetic applied to geometry 5 Descartes' Geometry 6 An astonishing identity 7 Unreasonable effectiveness 8 The application of geometry to arithmetic 9 The application of mathematics to mathematics 10 The same stuff? 11 Over-determined? 12 Unity behind diversity 13 On mentioning honours - the Fields Medals 14 Analogy - and Andre Weil 1940 15 The Langlands programme 16 Application, analogy, correspondence B Proof 17 Two visions of proof 18 A convention 19 Eternal truths 20 Mere eternity as against necessity 21 Leibnizian proof 22 Voevodsky' s extreme 23 Cartesian proof 24 Descartes and Wittgenstein on proof 25 The experience of cartesian proof: caveat emptor 26 Grothendieck's cartesian vision: making it all obvious 27 Proofs and refutations 28 On squaring squares and not cubing cubes 29 From dissecting squares to electrical networks 30 Intuition 31 Descartes against foundations? 32 The two ideals of proof 33 Computer programmes: who checks whom? Chapter 2. What makes mathematics mathematics? 1 We take it for granted 2 Arsenic 3 Some dictionaries 4 What the dictionaries suggest 5 A Japanese conversation 6 A sullen anti-mathematical protest 7 A miscellany 8 An institutional answer 9 A neuro-historical answer 10 The Peirces, father and son 11 A programmatic answer: logicism 12 A second programmatic answer: Bourbaki 13 Only Wittgenstein seems to have been troubled 14 Aside on method - on using Wittgenstein 15 A semantic answer 16 More miscellany 17 Proof 18 Experimental mathematics 19 Thurston's answer to the question 'what makes?' 20 On advance 21 Hilbert and the Millennium 22 Symmetry 23 The Butterfly Model 24 Could 'mathematics' be a 'fluke of history'? 25 The Latin Model 26 Inevitable or contingent? 27 Play 28 Mathematical games, ludic proof Chapter 3. Why is there philosophy of mathematics? 1 A perennial topic 2 What is the philosophy of mathematics anyway? 3 Kant: in or out? 4 Ancient and Enlightenment A An answer from the ancients: proof and exploration 5 The perennial philosophical obsession ... 6 The perennial philosophical obsession ... is totally anomalous 7 Food for thought (Matiere a penser) 8 The Monster 9 Exhaustive classification 10 Moonshine 11 The longest proof by hand 12 The experience of out-thereness 13 Parables 14 Glitter 15 The neurobiological retort 16 My own attitude 17 Naturalism 18 Plato! B An answer from the Enlightenment: application 19 Kant shouts 20 The jargon 21 Necessity 22 Russell trashes necessity 23 Necessity no longer in the portfolio 24 Aside on Wittgenstein 25 Kant's question 26 Russell's version 2 7 Russell dissolves the mystery 28 Frege: number a second-order concept 29 Kant's conundrum becomes a twentieth-century dilemma: (a) Vienna 30 Kant's conundrum becomes a twentieth-century dilemma: (b) Quine 31 Ayer, Quine, and Kant 32 Logicizing philosophy of mathematics 33 A nifty one-sentence summary (Putnam redux) 34 John Stuart Mill on the need for a sound philosophy of mathematics Chapter 4. Proofs 1 The contingency of the philosophy of mathematics A Little contingencies 2 On inevitability and 'success' 3 Latin Model: infinity 4 Butterfly Model: complex numbers 5 Changing the setting B Proof 6 The discovery of proof 7 Kant's tale 8 The other legend: Pythagoras 9 Unlocking the secrets of the universe 10 Plato, theoretical physicist 11 Harmonics works 12 Why there was uptake of demonstrative proof 13 Plato, kidnapper 14 Another suspect? Eleatic philosophy 15 Logic (and rhetoric) 16 Geometry and logic: esoteric and exoteric 17 Civilization without proof 18 Class bias 19 Did the ideal of proof impede the growth of knowledge? 20 What gold standard? 21 Proof demoted 22 A style of scientific reasoning Chapter 5. Applications 1 Past and present A THE EMERGENCE OF A DISTINCTION 2 Plato on the difference between philosophical and practical mathematics 3 Pure and mixed 4 Newton 5 Probability - swinging from branch to branch 6 Rein and angewandt 7 Pure Kant 8 Pure Gauss 9 The German nineteenth century, told in aphorisms 10 Applied polytechniciens 11 Military history 12 William Rowan Hamilton 13 Cambridge pure mathematics 14 Hardy, Russell, and Whitehead 15 Wittgenstein and von Mises 16 SIAM B A VERY WOBBLY DISTINCTION 17 Kinds of application 18 Robust but not sharp 19 Philosophy and the Apps 20 Symmetry 21 The representational-deductive picture 22 Articulation 23 Moving from domain to domain 24 Rigidity 25 Maxwell and Buckminster Fuller 26 The maths of rigidity 2 7 Aerodynamics 28 Rivalry 29 The British institutional setting 30 The German institutional setting 31 Mechanics 32 Geometry, 'pure' and 'applied' 33 A general moral 34 Another style of scientific reasoning Chapter 6. In Plato's name 1 llauntology 2 Platonism 3 Webster's 4 Born that way 5 Sources 6 Semantic ascent 7 Organization A ALAIN CONNES, PLATONIST 8 Off-duty and off-the-cuff 9 Connes' archaic mathematical reality 10 Aside on incompleteness and platonism 11 Two attitudes, structuralist and Platonist 12 What numbers could not be 13 Pythagorean Connes B TIMOTHY GOWERS, ANTI-PLATONIST 14 A very public mathematician 15 Does mathematics need a philosophy? No 16 On becoming an anti-Platonist 17 Does mathematics need a philosophy? Yes 18 Ontological commitment 19 Truth 20 Observable and abstract numbers 21 Gowers versus Connes 22 The 'standard' semantical account 23 The famous maxim 24 Chomsky's doubts 25 On referring Chapter 7 Counter-platonisms 1 Two more platonisms - and their opponents A TOTALIZING PLATONISM AS OPPOSEDTO INTUITIONISM 2 Paul Bernays (1888-1977) 3 The setting 4 Totalities 5 Other totalities 6 Arithmetical and geometrical totalities 7 Then and now: different philosophical concerns 8 Two more mathematicians, Kronecker and Dedekind 9 Some things Dedekind said 10 What was Kronecker protesting? 11 The structuralisms of mathematicians and philosophers distinguished B TODAY'S PLATONISM/NOMINALISM 12 Disclaimer 13 A brief history of nominalism now 14 The nominalist programme 15 Whydeny? 16 Russellian roots 17 Ontological commitment 19 The indispensability argument 20 Presupposition 21 Contemporary platonism in mathematics 22 Intuition 23 What's the point of platonism? 24 Peirce: The only kind of thinking that has everadvanced human culture 25 Where do I stand on today's platonism/ nominalism? 26 The last word Disclosures References Index