دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Sarika Jain, Vishal Jain, Valentina Emilia Balas سری: ISBN (شابک) : 9780128224687 ناشر: Academic Press is an Imprint of Elsevier سال نشر: 2021 تعداد صفحات: [271] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 15 Mb
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Web Semantics. Cutting Edge and Future Directions in Healthcare به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب معناشناسی وب رهنمودهای پیشرفته و آینده در مراقبت های بهداشتی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
معناشناسی وب توصیف منابع وب را برای بهره برداری بهتر از آنها تقویت می کند و آنها را برای انسان ها و ماشین ها معنادارتر می کند، در نتیجه به توسعه یک وب داده فشرده با دانش کمک می کند. جهان در حال تجربه حرکت مفهوم از داده به دانش و حرکت وب از مدل سند به مدل داده است. ایده اصلی این است که ماشین داده را قابل درک و پردازش کند. در پرتو این روندها، تطبیق معنایی و وب برای پیشرفت بیشتر در منطقه از اهمیت بالایی برخوردار است. معناشناسی وب: لبه و جهت های آینده در مراقبت های بهداشتی سه جزء اصلی مطالعه وب معنایی، یعنی بازنمایی، استدلال و امنیت را با تمرکز ویژه بر حوزه مراقبت های بهداشتی توصیف می کند. این کتاب روندها و پیشرفتهای پژوهشی جاری در معناشناسی وب را با تأکید بر ابزارها و تکنیکهای موجود، روششناسی و راهحلهای پژوهشی خلاصه میکند. این اطلاعات به راحتی قابل درک در مورد Semantics وب از جمله semantics برای داده ها و semantics برای خدمات ارائه می دهد. یک بررسی جامع از تحقیقات نوظهور در حوزههای وب معنایی، از جمله مهندسی هستیشناسی، حاشیهنویسی معنایی، استدلال و پردازش هوشمند، پارادایمهای جستجوی معنایی، وبکاوی معنایی، و تحلیل احساسات معنایی ارائه میکند. مهندسی و مراقبت های بهداشتی، از جمله نقشه برداری از پایگاه های دانش ناهمگون، مسائل امنیتی، وب معنایی چند زبانه، و یکپارچه سازی پایگاه های داده با پایگاه های دانش شامل پوشش حوزه های کاربردی کلیدی وب معنایی، از جمله تصمیم گیری بالینی، علم تنوع زیستی، مراقبت های بهداشتی تعاملی، سیستم های عامل هوشمند، سیستم های پشتیبانی تصمیم و پردازش زبان طبیعی بالینی
Web Semantics strengthen the description of web resources to exploit them better and make them more meaningful for both humans and machines, thereby contributing to the development of a knowledgeintensive data web. The world is experiencing the movement of concept from data to knowledge and the movement of web from document model to data model. The underlying idea is making the data machine understandable and processable. In the light of these trends, conciliation of Semantic and the Web is of paramount importance for further progress in the area. Web Semantics: Cutting Edge and Future Directions in Healthcare describes the three major components of the study of Semantic Web, namely Representation, Reasoning, and Security with a special focus on the healthcare domain. This book summarizes the trends and current research advances in web semantics, emphasizing the existing tools and techniques, methodologies, and research solutions. It provides easily comprehensible information on Web Semantics including semantics for data and semantics for services. Presents a comprehensive examination of the emerging research in areas of the semantic web, including ontological engineering, semantic annotation, reasoning and intelligent processing, semantic search paradigms, semantic web mining, and semantic sentiment analysis Helps readers understand key concepts in semantic web applications for biomedical engineering and healthcare, including mapping disparate knowledge bases, security issues, multilingual semantic web, and integrating databases with knowledge bases Includes coverage of key application areas of the semantic web, including clinical decision-making, biodiversity science, interactive healthcare, intelligent agent systems, decision support systems, and clinical natural language processing
Title-page_2021_Web-Semantics Web Semantics Copyright_2021_Web-Semantics Copyright Contents_2021_Web-Semantics Contents List-of-contributors_2021_Web-Semantics List of contributors Preface_2021_Web-Semantics Preface Representation Reasoning Security Chapter-1---Semantic-intelligence--An-overview_2021_Web-Semantics 1 Semantic intelligence: An overview 1.1 Overview 1.2 Semantic Intelligence 1.2.1 Publishing and consuming data on the web 1.2.2 Semantic Intelligence technologies applied within enterprises 1.3 About the book Chapter-2---Convology--an-ontology-for-conversational-agents_2021_Web-Semant 2 Convology: an ontology for conversational agents in digital health 2.1 Introduction 2.2 Background 2.3 The construction of convology 2.3.1 Specification 2.3.2 Knowledge acquisition 2.3.3 Conceptualization 2.3.4 Integration 2.4 Inside convology 2.4.1 Dialog 2.4.2 Actor 2.4.3 ConversationItem 2.4.4 Event 2.4.5 Status 2.5 Availability and reusability 2.6 Convology in action 2.6.1 Other scenarios 2.7 Resource sustainability and maintenance 2.8 Conclusions and future work References Chapter-3---Conversion-between-semantic-data-models--the-story_2021_Web-Sema 3 Conversion between semantic data models: the story so far, and the road ahead 3.1 Introduction 3.2 Resource Description Framework as a semantic data model 3.3 Related work 3.4 Conceptual evaluation 3.4.1 Comparison study 3.4.2 Generalized architecture 3.5 Findings 3.6 Concluding remarks References Chapter-4---Semantic-interoperability--the-future-of-health_2021_Web-Semanti 4 Semantic interoperability: the future of healthcare 4.1 Introduction 4.1.1 Healthcare interoperability: a brief overview 4.2 Semantic web technologies 4.2.1 Resource data framework 4.2.2 RDF graphs 4.2.3 Vocabularies, RDFS and OWL 4.2.4 SPARQL 4.2.5 Applications of semantic web technology 4.3 Syntactic interoperability 4.3.1 Health level 7 version 2.x 4.3.2 Health level 7 version 3.x 4.3.3 Fast healthcare interoperable resource 4.4 Semantic interoperability 4.4.1 History of clinical coding systems 4.4.2 Difference between clinical terminology systems and clinical classification systems 4.4.3 Semantic interoperability and semantic web technology 4.5 Contribution of semantic web technology to aid healthcare interoperability 4.5.1 Syntactic interoperability and semantic web technology 4.5.2 Semantic interoperability and semantic web technology 4.6 Discussion and future work 4.6.1 Challenges with the adoption of semantic web technology at the semantic interoperability level 4.6.2 Challenges with the adoption of semantic web technology at the syntactic interoperability level 4.7 Conclusion References Chapter-5---A-knowledge-graph-of-medical-institutions-in-K_2021_Web-Semantic 5 A knowledge graph of medical institutions in Korea 5.1 Introduction 5.2 Related work 5.2.1 Formal definition of knowledge base 5.2.2 Public data in Korea 5.3 Medical institutions in Korea 5.4 Knowledge graph of medical institutions 5.4.1 Data collection 5.4.2 Model of administrative district 5.4.3 Model of medical institutions 5.4.4 Graph transformation 5.5 Conclusion References Chapter-6---Resource-description-framework-based-semantic-knowl_2021_Web-Sem 6 Resource description framework based semantic knowledge graph for clinical decision support systems 6.1 Introduction 6.2 Knowledge representation using RDF 6.2.1 Knowledge-based systems 6.2.2 Knowledge representation in knowledge-based system 6.2.3 Resource description framework for knowledge representation 6.3 Simple knowledge organization system 6.3.1 Knowledge organization system 6.3.2 Simple knowledge organization system 6.3.3 Simple knowledge organization system core and resource description framework 6.4 Semantic knowledge graph 6.4.1 Knowledge graphs 6.4.2 Semantic knowledge graph 6.4.3 RDF-based semantic knowledge graph 6.5 Semantic knowledge graph for clinical decision support systems 6.5.1 Clinical decision support systems 6.5.2 Semantic knowledge graph for clinical decision support systems 6.5.3 Advantages of RDF-based semantic knowledge graph 6.6 Discussion and future possibilities 6.7 Conclusion References Chapter-7---Probabilistic--syntactic--and-semantic-reasoning-u_2021_Web-Sema 7 Probabilistic, syntactic, and semantic reasoning using MEBN, OWL, and PCFG in healthcare 7.1 Introduction 7.2 Multientity Bayesian networks 7.3 Semantic web and uncertainty 7.4 MEBN and ontology web language 7.5 MEBN and probabilistic context-free grammar 7.6 Summary References Chapter-8---The-connected-electronic-health-record--a-semantic-e_2021_Web-Se 8 The connected electronic health record: a semantic-enabled, flexible, and unified electronic health record 8.1 Introduction 8.2 Motivating scenario: smart health unit 8.3 Literature review 8.3.1 Background 8.3.1.1 Electronic health record-related standards and terminologies 8.3.1.2 Semantic interoperability: internet of things-based ontologies 8.3.2 Related Studies 8.3.2.1 Electronic health records and EHR systems 8.4 Our connected electronic health record system approach 8.4.1 Architecture description 8.4.2 Data processing module 8.4.2.1 Preprocessing data 8.4.2.2 Data transformation 8.4.2.3 Data analysis based on data aggregation process 8.5 Implementation 8.6 Experimental results 8.6.1 Analysis performance of connected electronic health record 8.6.2 Response time of connected electronic health record 8.7 Conclusion and future works References Chapter-9---Ontology-supported-rule-based-reasoning-for-emer_2021_Web-Semant 9 Ontology-supported rule-based reasoning for emergency management 9.1 Introduction 9.2 Literature review 9.3 System framework 9.3.1 Construction of ontology 9.4 Inference of knowledge 9.4.1 System in action 9.4.1.1 Tools/techniques/languages employed 9.4.2 Sample scenarios 9.5 Conclusion and future work References Chapter-10---Health-care-cube-integrator-for-health-care-da_2021_Web-Semanti 10 Health care cube integrator for health care databases 10.1 Introduction: state-of-the-art health care system 10.2 Research methods and literature findings of research publications 10.2.1 Indian health policies and information technology 10.2.2 Electronic health record availability in India and its privacies challenges 10.2.3 Electronic health records databases/system study 10.2.4 Study of existing health knowledgebases and their infrastructures 10.2.5 Study of existing solution available for health data integration 10.2.6 Health care processes and semantic web technologies 10.2.7 Research objectives 10.3 HCI conceptual framework and designing framework 10.4 Implementation framework and experimental setup 10.5 Result analysis, conclusion, and future enhancement of work 10.5.1 Result analysis 10.5.2 Conclusion 10.5.3 Future enhancement of work References Chapter-11---Smart-mental-healthcare-systems_2021_Web-Semantics 11 Smart mental healthcare systems 11.1 Introduction 11.2 Classification of mental healthcare 11.3 Challenges of a healthcare environment 11.3.1 Big data 11.3.2 Heterogeneity 11.3.3 Natural language processing 11.3.4 Knowledge representation 11.3.5 Invasive and continuous monitoring 11.4 Benefits of smart mental healthcare 11.4.1 Personalization 11.4.2 Contextualization 11.4.3 Actionable knowledge 11.4.4 Invasive and continuous monitoring 11.4.5 Early intervention or detection 11.4.6 Privacy and cost of treatment 11.5 Architecture 11.5.1 Semantic annotation 11.5.2 Sentiment analysis 11.5.3 Machine learning 11.6 Conclusion References Chapter-12---A-meaning-aware-information-search-and-retrieval_2021_Web-Seman 12 A meaning-aware information search and retrieval framework for healthcare 12.1 Introduction 12.2 Related work 12.3 Semantic search and information retrieval in healthcare 12.4 A framework for meaning-aware healthcare information extraction from unstructured text data 12.4.1 Meaning-aware healthcare information discovery from ontologically annotated medical catalog database 12.4.2 Semantic similarity computation 12.4.3 Semantic healthcare information discovery—an illustration 12.5 Future research dimensions 12.6 Conclusion Key terms and definitions References Chapter-13---Ontology-based-intelligent-decision-support-syst_2021_Web-Seman 13 Ontology-based intelligent decision support systems: A systematic approach 13.1 Introduction 13.2 Enabling technologies to implement decision support system 13.2.1 IoT-enabled decision support system for data acquisition, transmission, and storage 13.2.1.1 Data acquisition 13.2.1.2 Data transmission and storage 13.2.2 Application of machine learning and deep learning techniques for predictive analysis of patient’s health 13.2.2.1 Identification of diseases 13.2.2.2 Smart electronic health records 13.2.2.3 Behavioral monitoring 13.3 Role of ontology in DSS for knowledge modeling 13.3.1 Issues and challenges 13.3.2 Technology available 13.4 QoS and QoE parameters in decision support systems for healthcare 13.4.1 Why QoS versus QoE is important in such system implementation in healthcare? 13.4.2 Definition of significant quality of service and quality of experience parameters 13.4.2.1 Quality of service metrics parameters 13.4.2.2 QoE metrics 13.5 Conclusion References Chapter-14---Ontology-based-decision-making_2021_Web-Semantics 14 Ontology-based decision-making 14.1 Introduction 14.2 Issue-Procedure Ontology 14.3 Issue-Procedure Ontology for Medicine 14.4 Conclusion References Chapter-15---A-new-method-for-profile-identification-using-ont_2021_Web-Sema 15 A new method for profile identification using ontology-based semantic similarity 15.1 Introduction 15.2 Proposed method 15.2.1 Weight allocation for keyword 15.2.2 Semantic matching 15.2.2.1 Build paths 15.2.2.2 Semantic similarity 15.2.2.3 Weight computing of the concept 15.2.3 Profile creation 15.3 Conclusion References Chapter-16---Semantic-similarity-based-descriptive-answer-e_2021_Web-Semanti 16 Semantic similarity–based descriptive answer evaluation 16.1 Introduction 16.2 Literature survey 16.3 Proposed system 16.3.1 Wu and Palmer: word similarity 16.3.2 Semantic similarity between a pair of sentences 16.3.3 Semantic similarity between words (similarity matrix calculation) 16.4 Algorithm 16.5 Data set 16.6 Results 16.7 Conclusion and discussion References Chapter-17---Classification-of-genetic-mutations-using-ontologi_2021_Web-Sem 17 Classification of genetic mutations using ontologies from clinical documents and deep learning 17.1 Introduction 17.2 Clinical Natural Language Processing 17.3 Clinical Natural Language Processing (Clinical NLP) techniques 17.3.1 Statistical techniques in Clinical Natural Language Processing 17.3.1.1 Bag of words 17.3.1.2 Term frequency-inverse document frequency 17.3.1.3 Rapid automatically keyword extraction 17.3.2 Linguistic techniques in Clinical Natural Language Processing 17.3.2.1 Part of speech tagging 17.3.2.2 Tokenization 17.3.2.3 Dependency graph 17.3.3 Graphical techniques in Clinical Natural Language Processing 17.3.3.1 TextRank 17.3.3.2 Hyper link induced topic search 17.3.4 Machine learning techniques in Clinical Natural Language Processing 17.3.4.1 Support vector machine 17.3.4.2 Word2Vec 17.3.5 Deep learning techniques in Clinical Natural Language Processing 17.3.5.1 Convolution neural network 17.3.5.2 Recurrent neural network 17.4 Clinical Natural Language Processing and Semantic Web 17.4.1 Ontology creation from clinical documents 17.4.2 Framework for classification of genetic mutations using ontologies from clinical document 17.5 Case study: Classification of Genetic Mutation using Deep Learning and Clinical Natural Language Processing 17.6 Conclusion References Chapter-18---Security-issues-for-the-Semantic-Web_2021_Web-Semantics 18 Security issues for the Semantic Web 18.1 Introduction 18.1.1 Security and cryptography 18.1.1.1 Symmetric key cryptography or secret key cryptography 18.1.1.2 Asymmetric key cryptography or public-key cryptography 18.1.2 Introduction to Semantic Web 18.2 Related work 18.3 Security standards for the Semantic Web 18.3.1 Securing the extensible markup language 18.3.2 Securing the resource description framework 18.3.3 Information interoperability in a secured way 18.3.3.1 Management of trust for the Semantic Web 18.4 Different attacks on the Semantic Web 18.4.1 Importance of transport layer security on the Semantic Web 18.5 Drawbacks of the existing privacy and security protocols in W3C social web standards 18.6 Semantic attackers 18.7 Privacy and Semantic Web 18.8 Directions for future security protocols for the Semantic Web 18.9 Conclusion References Index_2021_Web-Semantics Index