ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Wearable Systems and Antennas Technologies for 5G, IOT and Medical Systems

دانلود کتاب سیستم‌های پوشیدنی و فناوری‌های آنتن برای 5G، IOT و سیستم‌های پزشکی

Wearable Systems and Antennas Technologies for 5G, IOT and Medical Systems

مشخصات کتاب

Wearable Systems and Antennas Technologies for 5G, IOT and Medical Systems

دسته بندی: الکترونیک: ارتباطات از راه دور
ویرایش:  
نویسندگان:   
سری:  
ISBN (شابک) : 0367409135, 9780367409135 
ناشر: CRC Press 
سال نشر: 2020 
تعداد صفحات: 545 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 151 مگابایت 

قیمت کتاب (تومان) : 44,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 11


در صورت تبدیل فایل کتاب Wearable Systems and Antennas Technologies for 5G, IOT and Medical Systems به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب سیستم‌های پوشیدنی و فناوری‌های آنتن برای 5G، IOT و سیستم‌های پزشکی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب سیستم‌های پوشیدنی و فناوری‌های آنتن برای 5G، IOT و سیستم‌های پزشکی



با توجه به پیشرفت در توسعه سیستم های ارتباطی، اکنون امکان توسعه سیستم های ارتباطی پوشیدنی ارزان قیمت وجود دارد. آنتن پوشیدنی بخشی از لباس یا نزدیک به بدن است و برای مقاصد ارتباطی از جمله ردیابی و ناوبری، محاسبات تلفن همراه و امنیت عمومی استفاده می‌شود. به عنوان مثال می‌توان به ساعت‌های هوشمند (با آنتن‌های بلوتوث یکپارچه)، عینک‌ها (مانند Google Glass با آنتن‌های Wi-Fi و GPS)، دوربین‌های اکشن GoPro (با آنتن‌های Wi-Fi و بلوتوث) و غیره اشاره کرد. و کاربردهای پزشکی با این حال، توسعه آنتن های پوشیدنی فشرده و کارآمد یکی از چالش های اصلی در توسعه سیستم های ارتباطی و پزشکی پوشیدنی است. فن آوری هایی مانند آنتن های فشرده چاپی و تکنیک های کوچک سازی برای ایجاد آنتن های پوشیدنی کارآمد و کوچک که هدف اصلی این کتاب است، توسعه یافته اند.

هر فصل جزئیات و توضیحات ریاضی کافی را پوشش می‌دهد تا مهندسان برق، الکترومغناطیسی و بیوپزشکی و دانشجویان و دانشمندان از همه حوزه‌ها بتوانند موضوعات ارائه شده را دنبال و درک کنند. موضوعات و روش های جدید طراحی برای اولین بار در حوزه آنتن های پوشیدنی، آنتن های متامتریال و آنتن های فراکتال ارائه شده است. این کتاب آنتن های پوشیدنی، تکنیک های اندازه گیری RF و نتایج اندازه گیری شده در مجاورت بدن انسان، تنظیمات و ملاحظات طراحی را پوشش می دهد. آنتن‌های پوشیدنی و دستگاه‌های ارائه‌شده در این کتاب با استفاده از نرم‌افزار الکترومغناطیسی تمام‌موج HFSS و ADS 3D تجزیه و تحلیل شدند.

  • کاوش در سیستم‌ها و آنتن‌های پزشکی پوشیدنی
  • طراحی و توسعه سیستم های ارتباطی پوشیدنی را توضیح می دهد
  • کاوش پوشیدنی قابل تنظیم مجدد آنتن ها برای کاربردهای ارتباطی و پزشکی
  • درباره انواع جدیدی از آنتن های فراماده و هادی های مغناطیسی مصنوعی (AMC) بحث می کند
  • بررسی آنتن های نساجی

Dr. آلبرت سابان دارای مدرک دکترای مهندسی برق از دانشگاه کلرادو در بولدر، ایالات متحده (1991) و MBA از دانشکده مدیریت، دانشگاه حیفا، اسرائیل (2005) است. او در حال حاضر مدرس ارشد و محقق در گروه مهندسی برق و الکترونیک در کالج‌های مهندسی Kinneret و Ort Braude است.


توضیحاتی درمورد کتاب به خارجی

Due to progress in the development of communication systems, it is now possible to develop low-cost wearable communication systems. A wearable antenna is meant to be a part of the clothing or close to the body and used for communication purposes, which include tracking and navigation, mobile computing and public safety. Examples include smartwatches (with integrated Bluetooth antennas), glasses (such as Google Glass with Wi-Fi and GPS antennas), GoPro action cameras (with Wi-Fi and Bluetooth antennas), etc. They are increasingly common in consumer electronics and for healthcare and medical applications. However, the development of compact, efficient wearable antennas is one of the major challenges in the development of wearable communication and medical systems. Technologies such as printed compact antennas and miniaturization techniques have been developed to create efficient, small wearable antennas which are the main objective of this book.

Each chapter covers enough mathematical detail and explanations to enable electrical, electromagnetic and biomedical engineers and students and scientists from all areas to follow and understand the topics presented. New topics and design methods are presented for the first time in the area of wearable antennas, metamaterial antennas and fractal antennas. The book covers wearable antennas, RF measurements techniques and measured results in the vicinity of the human body, setups and design considerations. The wearable antennas and devices presented in this book were analyzed by using HFSS and ADS 3D full-wave electromagnetics software.

  • Explores wearable medical systems and antennas
  • Explains the design and development of wearable communication systems
  • Explores wearable reconfigurable antennas for communication and medical applications
  • Discusses new types of metamaterial antennas and artificial magnetic conductors (AMC)
  • Reviews textile antennas

Dr. Albert Sabban holds a PhD in Electrical Engineering from the University of Colorado at Boulder, USA (1991), and an MBA from the Faculty of Management, Haifa University, Israel (2005). He is currently a Senior Lecturer and researcher at the Department of Electrical and Electronic Engineering at Kinneret and Ort Braude Engineering Colleges.



فهرست مطالب

Cover
Half Title
Title Page
Copyright Page
Dedication
Table of Contents
Preface
Acknowledgments
Editor
List of Contributors
Chapter 1: Wearable Communication and IOT Systems Basics
	Introduction
	1.1 Generations of Mobile Networks
		1.1.1 First Generation (1G)
			1.1.1.1 1G Basic Features
			1.1.1.2 Bits Per Second
			1.1.1.3 Global System for Mobile Communications (GSM)
		1.1.2 Second Generation (2G)
			1.1.2.1 SMS
			1.1.2.2 MMS
			1.1.2.3 Enhanced Data Rates for GSM Evolution (EDGE)
			1.1.2.4 2G Basic Features
			1.1.2.5 2.5G and 2.75G
			1.1.2.6 2.5G Basic Features
		1.1.3 Third Generation (3G)
			1.1.3.1 3G Basic Features
		1.1.4 Fourth Generation (4G)
			1.1.4.1 4G Basic Features
		1.1.5 Fifth Generation (5G)
			1.1.5.1 5G Basic Features
	1.2 Receivers: Definitions and Features
		1.2.1 Receivers: Definitions
	1.3 Transmitters: Definitions and Features
		1.3.1 Amplifier s
	1.4 Basic Electromagnetic Wave Definitions
		1.4.1 Free Space Propagation
	1.5 Friis Transmission Formula
	1.6 Communication Systems Link Budget
	1.7 Path Loss
		1.7.1 Free Space Path Loss
		1.7.2 Hata Model
	1.8 Receiver Sensitivity
		1.8.1 Noise Sources
		1.9.2 Basic Receiver Sensitivity Calculation
	1.9 Internet of Things (IOT) Basics
		1.9.1 IOT Benefits to Companies and Organizations
		1.9.2 IOT Advantages
		1.9.3 IOT Disadvantages
	1.10 Logarithmic Relations
	1.11 Wireless Communication System Link Budget, an Example
		1.11.1 Mobile Phone Downlink
		1.11.2 Mobile Phone Uplink
	References
Chapter 2: Electromagnetics and Transmission Lines for Wearable Communication Systems
	Introduction
	2.1 Electromagnetic Spectrum
	2.2 Electromagnetic Fields Theory for Medical and 5G Systems
	2.3 Electromagnetic Waves Theory for Medical and 5G Systems
		2.3.1 Maxwell’s Equations
		2.3.2 Gauss’s Law for Electric Fields
		2.3.3 Gauss’s Law for Magnetic Fields
		2.3.4 Ampère’sm Law
		2.3.5 Faraday’s Law
		2.3.6 Wave Equations
	2.4 Waves Propagation through Human Body
	2.5 Materials
	2.6 Transmission Lines Theory
		2.6.1 Waves in Transmission Lines
	2.7 Matching Techniques
		2.7.1 Quarter-Wave Transformers
		2.7.2 Wideband Matching – Multi-Section Transformers
		2.7.3 Single Stub Matching
	2.8 Coaxial Transmission Line
		2.8.1 Cutoff Frequency, f c, and Wavelength of Coax Cables
	2.9 Microstrip Line
		2.9.1 Effective Dielectric Constant
		2.9.2 Characteristic Impedance
		2.9.3 Higher-Order Transmission Modes in Microstrip Line
		2.9.4 Conductor Loss
		2.9.5 Dielectric Loss
	2.10 Waveguides
		2.10.1 TE Waves
		2.10.2 TM Waves
	2.11 Circular Waveguide
		2.11.1 TE Waves in Circular Waveguide
		2.11.2 TM Waves in Circular Waveguide
	References
Chapter 3: Antennas for Wearable 5G Communication and Medical Systems
	3.1 Introduction to Antennas
	3.2 Antenna: Definitions
		3.2.1 Steerable Antennas
		3.2.2 Types of Antennas
			3.2.2.1 Small Antennas for Wearable Communication Systems
			3.2.2.2 Aperture Antennas for Base Station Communication Systems
	3.3 Dipole Antenna
		3.3.1 Radiation from Small Dipole
			3.3.1.1 Dipole Radiation Pattern
			3.3.1.2 Dipole E Plane Radiation Pattern
			3.3.1.3 Dipole H Plane Radiation Pattern
			3.3.1.4 Antenna Radiation Pattern
			3.3.1.5 Dipole Directivity
			3.3.1.6 Antenna Impedance
			3.3.1.7 Impedance of a Folded Dipole
	3.4 Monopole Antenna for Wearable Communication Systems
	3.5 Loop Antennas for Wireless Communication Systems
		3.5.1 Duality Relationship between Dipole and Loop Antennas
		3.5.2 Medical Applications of Printed Loop Antennas
	3.6 Wearable Loop Antennas
		3.6.1 Small Wearable Loop Antenna
		3.6.2 Wearable Printed Loop Antenna
		3.6.3 Wired Loop Antenna
	3.7 Wearable Loop Antennas with Ground Plane
	3.8 Radiation Pattern of a Loop Antenna near a Metal Sheet
	3.9 Conclusions
	References
Chapter 4: Wideband Wearable Antennas for 5G Communication Systems, IOT and Medical Systems
	4.1 Introduction
	4.2 Printed Wearable Antennas
		4.2.1 Double-Layer Printed Wearable Dipole Antennas
		4.2.2 Printed Wearable Dual Polarized Dipole Antennas
	4.3 Printed Wearable Loop Antenna
	4.4 Wearable Microstrip Antennas
		4.4.1 Wearable Microstrip Antennas
		4.4.2 Transmission Line Model of Microstrip Antennas
		4.4.3 Higher-Order Transmission Modes in Microstrip Antennas
		4.4.4 Effective Dielectric Constant
		4.4.5 Losses in Microstrip Antennas
			4.4.5.1 Conductor Loss
			4.4.5.2 Dielectric Loss
		4.4.6 Patch Radiation Pattern
	4.5 Two-Layer Wearable Stacked Microstrip Antennas
	4.6 Stacked Mono-Pulse Ku Band Patch Antenna
		4.6.1 Rat-Race Coupler
	4.7 Wearable PIFA
		4.7.1 Grounded Quarter-Wavelength Patch Antenna
		4.7.2 A Wearable Double-Layer PIFA
	4.8 Conclusions
	References
Chapter 5: Small Wearable Antennas: Experimental Case Studies
	5.1 Introduction
	5.2 Antenna on Helmet with High F/B Ratio
	5.3 Wearable Antenna for High Power Cellular Jammer
	5.4 RFID Reader UHF Antenna in the Pocket
	5.5 Small Helical Antenna for a Personal Locator Beacon
	5.6 VHF Antenna for Personal Communications
	References
Chapter 6: Small Antennas Mounted near the Human Body: Experimental Case Studies
	6.1 Introduction
	6.2 Wearable UHF RFID Tag on the Neck
	6.3 Short-Range Link through the Body at 2.4 GHz
	6.4 Measurements of Body Parameters with EKG Pads
	6.5 Cellular Antennas on a Phantom
	6.6 Small Antenna Inserted into a Phantom
		6.6.1 Coil
		6.6.2 Monopole
	References
Chapter 7: Wideband RF Technologies for Wearable Communication Systems
	7.1 Introduction
	7.2 MICs for 5G and Internet of Things Applications
	7.3 K Band Compact Receiving Channel
		7.3.1 Introduction
		7.3.2 Receiving Channel Design
			7.3.2.1 Receiving Channel Specifications
		7.3.3 Description of the Receiving Channel
		7.3.4 Development of the Receiving Channel
		7.3.5 Measured Test Results of the Receiving Channel
	7.4 MMICs
		7.4.1 Features of MMIC Technologies
		7.4.2 MMIC Components
		7.4.3 Advantages of GaAs versus Silicon
		7.4.4 Semiconductor Technology
		7.4.5 MMIC Fabrication Process
			7.4.5.1 MMIC Fabrication Process List
			7.4.5.2 Etching versus Lift-off Removal Processes
		7.4.6 Generation of Microwave Signals in Microwave and mm Wave
		7.4.7 MMIC Circuit Examples and Applications
			7.4.7.1 MMIC Applications
	7.5 18–40 GHz Front End
		7.5.1 18–40 GHz Front End Requirements
		7.5.2 Front End Design
		7.5.3 High Gain Front End Module
		7.5.4 High Gain Front End Design
	7.6 MEMS Technology
		7.6.1 MEMS Technology Advantages
		7.6.2 MEMS Technology Process
		7.6.3 MEMS Components
	7.7 W Band MEMS Detection Array
		7.7.1 Detection Array Concept
		7.7.2 The Array Principle of Operation
		7.7.3 W Band Antenna Design
		7.7.4 Resistor Design
		7.7.5 Array Fabrication and Measurement
		7.7.6 Mutual Coupling Effects between Pixels
	7.8 MEMS Bowtie Dipole with Bolometer
	7.9 LTCC and High-Temperature Co-Fired Ceramic (HTCC) Technology
		7.9.1 LTCC and HTCC Technology Process
		7.9.2 Advantages of LTCC
		7.9.3 Design of High Pass LTCC Filters
			7.9.3.1 High Pass Filter Specification
	7.10 Comparison of Single-Layer and Multi-Layer Printed Circuits
	7.11 A Compact Integrated Transceiver
		7.11.1 Introduction
		7.11.2 Description of the Receiving Channel
			7.11.2.1 Receiving Channel Specifications
		7.11.3 Receiving Channel Design and Fabrication
		7.11.4 Description of the Transmitting Channel
			7.11.4.1 Transmitting Channel Specifications
			7.11.4.2 Diplexer Specifications
		7.11.5 Transmitting Channel Fabrication
		7.11.6 RF Controller
	7.12 Conclusions
	References
Chapter 8: Wearable Metamaterial Antennas for Communication, IOT and Medical Systems
	8.1 Wireless Body Area Network (WBAN)
	8.2 Wearable Antennas
	8.3 Materials for Wearable Antennas
		8.3.1 Textile
		8.3.2 Polymer
	8.4 Metamaterials
		8.4.1 Artificial Dielectric
		8.4.2 FSS
		8.4.3 EBG
		8.4.4 Negative Index Material
		8.4.5 AMC
	8.5 Wearable Metamaterial-Based Antennas
		8.5.1 Multiband Textile Antennas with Metasurface
		8.5.2 Broad/Wideband Textile Antennas with Metasurface
	8.6 Conclusion
	References
Chapter 9: Wearable Technologies for 5G, Medical and Sport Applications
	9.1 Introduction
	9.2 Wearable Technology
	9.3 Wearable Medical Systems
		9.3.1 Applications of Wearable Medical Systems
	9.4 Physiological Parameters Measured by Wearable Medical Systems
		9.4.1 Measurement of Blood Pressure
		9.4.2 Measurement of Heart Rate
		9.4.3 Measurement of Respiration Rate
		9.4.4 Measurement of Human Body Temperature
		9.4.5 Measurement of Sweat Rate
		9.4.6 Measurement of Human Gait
		9.4.7 Wearable Devices Tracking and Monitoring Doctors and Patients inside Hospitals
	9.5 WBANs
	9.6 Wearable WBAN (WWBAN)
	9.7 Wearable RFID Technology and Antennas
		9.7.1 Introduction
		9.7.2 RFID Technology
		9.7.3 RFID Standards
	9.8 Wearable Dual Polarized 13.5 MHz Compact Printed Antenna
	9.9 Varying the Antenna Feed Network
	9.10 Wearable Loop Antennas for RFID Applications
	9.11 Wearable RFID Antenna Applications
	9.12 Conclusions
	References
Chapter 10: Wearable Textile Systems and Antennas for IOT and Medical Applications
	10.1 Introduction
	10.2 Textile Materials
	10.3 Textile Systems and Antennas for IOT and Medical Applications
	10.4 Textile Systems and Antennas for Sensing
	10.5 Textile Systems and Antennas for Location Tracking
	10.6 Textile Rectenna Systems for Energy Harvesting
	10.7 Summary
	References
Chapter 11: Development of Wearable Body Area Networks for 5G and Medical Communication Systems
	11.1 Introduction
	11.2 Cloud Storage and Computing Services for WBANs
		11.2.1 Advantages of Cloud Storage
		11.2.2 Disadvantages of Cloud Storage
		11.2.3 Cloud Computing
	11.3 Receiving Channel for Communication and Medical Applications
	11.4 Development Process of Wearable Medical and IOT Systems
		11.4.1 Steps in System Engineering Process
			11.4.1.1 Requirements Analysis
			11.4.1.2 System Analysis Control
			11.4.1.3 Functional Analysis
			11.4.1.4 Design Synthesis
	11.5 Conclusions
	References
Chapter 12: Efficient Wearable Metamaterial Antennas for Wireless Communication, IOT, 5G and Medical Systems
	Introduction
	12.1 Wearable Small Metamaterial Antennas for Wireless Communication and Medical Applications
		12.1.1 Introduction
		12.1.2 Printed Wearable Dipole Antennas with SRRs
		12.1.3 Folded Dipole Metamaterial Antenna with SRR
	12.2 Stacked Patch Antenna Loaded with SRR
	12.3 Patch Antenna Loaded with SRRs
	12.4 Metamaterial Antenna Characteristics in Vicinity to the Human Body
	12.5 Metamaterial Wearable Antennas
	12.6 Wideband Stacked Patch with SRR
	12.7 Conclusion
	References
Chapter 13: Wearable Compact Fractal Antennas for 5G and Medical Systems
	Introduction
	13.1 Introduction to Fractal Printed Antennas
		13.1.1 Fractal Structures
		13.1.2 Fractal Antennas
	13.2 Anti-Radar Fractals and/or Multilevel Chaff Dispersers
		13.2.1 Geometry of Dispersers
	13.3 Definition of Multilevel Fractal Structure
	13.4 Advanced Antenna System
		13.4.1 Comparison between Euclidean Antennas and Fractal Antenna
		13.4.2 Multilevel and Space-Filling Ground Planes for Miniature Antennas
		13.4.3 Multilevel Geometry
		13.4.4 SFC
	13.5 Wearable Fractal Antennas for 5G and IOT Applications
		13.5.1 A Wearable 2.5 GHz Fractal Antenna for Wireless Communication
		13.5.2 New Stacked Patch 2.5 GHz Fractal Printed Antennas
	13.6 X-Band Wearable Fractal Printed Antennas for 5G and IOT Applications
	13.7 Wearable Stacked Patch 7.4 GHz Fractal Antenna
	13.8 Conclusion
	References
Chapter 14: Reconfigurable Wearable Antennas
	14.1 Introduction
	14.2 Example Antennas
	14.3 Providing Diversity for Off-Body Links
		14.3.1 The Design of a Pattern Reconfigurable Antenna Suitable for Smart Glasses
		14.3.2 A Wrist Wearable Dual Port Dual Band Stacked Patch Antenna for Wireless Information and Power Transmission
	14.4 Switching between On-Body and Off-Body Links
		14.4.1 Pattern Diversity Antenna for On-Body and Off-Body Wireless BAN (WBAN) Links
		14.4.2 A Radiation Pattern Diversity Antenna Operating at the 2.4 GHz ISM Band
	14.5 Switching between In-Body and Off-Body Links
	14.6 Conclusion
	References
Chapter 15: Active Wearable Antennas for 5G and Medical Applications
	Introduction
	15.1 Tunable Wearable Printed Antennas for Wireless Communication Systems
	15.2 Varactors Basic Theory
		15.2.1 Varactor Diode Basics
		15.2.2 Types of Varactors
	15.3 Dual Polarized Tunable Dipole Antenna
	15.4 Wearable Tunable Antennas for 5G, Internet of Things (IOT) and Medical Applications
	15.5 Varactors’ Electrical Characteristics
	15.6 Measurements of Wearable Tunable Antennas
	15.7 Folded Dual Polarized Tunable Antenna for IOT and Medical Applications
	15.8 Medical Applications for Wearable Tunable Antennas
	15.9 Active Wearable Antennas for 5G, IOT and Medical Applications
		15.9.1 Basic Concept of Active Antennas (AAs)
		15.9.2 Active Wearable Receiving Loop Antenna
		15.9.3 Compact Dual Polarized Receiving AA
	15.10 Active Transmitting Antenna
		15.10.1 Compact Dual Polarized Active Transmitting Antenna
		15.10.2 Active Transmitting Loop Antenna
	15.11 Conclusions
	References
Chapter 16: New Wideband Passive and Active Wearable Slot and Notch Antennas for Wireless and Medical 5G Communication Systems
	Introduction
	16.1 Slot Antennas Basic Theory
	16.2 Slot Radiation Pattern
		16.2.1 Slot E Plane Radiation Pattern
		16.2.2 Slot H Plane Radiation Pattern
	16.3 Slot Antenna Impedance
	16.4 A Wideband Wearable Slot Antenna for Medical and Internet of Things (IOT) Applications
	16.5 A Wideband Compact T Shape Wearable Printed Slot Antenna
	16.6 Wideband Wearable Notch Antenna for 5G and IOT Communication Systems
		16.6.1 Wideband Notch Antenna 2.1–7.8 GHz
	16.7 Wearable Tunable Slot Antennas for 5G and IOT Communication Systems
	16.8 A Wideband T Shape Tunable Wearable Printed Slot Antenna
	16.9 Wearable Active Slot Antennas for 5G Communication and IOT Systems
	16.10 Wearable Active T Shape Slot Antennas for 5G Communication Systems
	16.11 New Fractal Compact Ultra-Wideband, 1–6 GHz, Notch Antenna
	16.12 New Compact Ultra-Wideband Notch Antenna 1.3–3.9 GHz
	16.13 New Compact Ultra-Wideband Notch Antenna 5.8–18 GHz
	16.14 New Fractal Active Compact Ultra-Wideband, 0.5–3 GHz, Notch Antenna
	16.15 New Compact Ultra-Wideband Active Notch Antenna 0.4–3 GHz
	16.16 Conclusions
	References
Chapter 17: Design and Measurements Process of Wearable Communication, Medical and IOT Systems
	17.1 Introduction
	17.2 CAD commercial software
		17.2.1 High Frequency Structure Simulator (HFSS) Software
			17.2.1.1 High-Frequency EM Solvers
			17.2.1.2 Ansys RF Option
			17.2.1.3 RF Option Features
			17.2.1.4 Circuit Analyses
		17.2.2 Advanced Design System (ADS)
			17.2.2.1 ADS Features
			17.2.2.2 ADS Functionality
			17.2.2.3 Simulators
			17.2.2.4 Model Sets
			17.2.2.5 Design Guides
			17.2.2.6 FEM Simulator
		17.2.3 CST Software
			17.2.3.1 CST Solvers
			17.2.3.2 CST Applications
		17.2.4 Microwave Office, AWR
			17.2.4.1 Microwave Office for MMIC Design
			17.2.4.2 System Simulation and Frequency Planning (with VSS)
			17.2.4.3 Microwave Office for Module Design
			17.2.4.4 ACE Technology
	17.3 Modeling and Representation of Wearable Systems with N ports
	17.4 Scattering Matrix
	17.5 S Parameters Measurements
		17.5.1 Types of S Parameters Measurements
	17.6 Transmission Measurements
	17.7 Output Power and Linearity Measurements
	17.8 Power Input Protection Measurement
	17.9 Non-Harmonic Spurious Measurements
	17.10 Switching Time Measurements
	17.11 IP2 Measurements
	17.12 IP3 Measurements
	17.13 Noise Figure Measurements
	17.14 Antenna Measurements
		17.14.1 Radiation Pattern Measurements
		17.14.2 Directivity and Antenna Effective Area (Aeff)
		17.14.3 Radiation Efficiency (α)
		17.14.4 Typical Antenna Radiation Pattern
		17.14.5 Gain Measurements
	17.15 Antenna Range Setup
	17.16 Conclusions
	References
Chapter 18: Wearable Antennas in Vicinity of Human Body for 5G, IOT and Medical Applications
	18.1 Introduction
	18.2 Analysis of Wearable Antennas in Vicinity of Human Body
	18.3 Design of Wearable Antennas in Presence of Human Body
	18.4 Wearable Antenna Arrays for Medical and 5G Applications
	18.5 Small Wide Band Dual Polarized Wearable Printed Antenna
	18.6 Wearable Helix Antenna Performance on Human Body
	18.7 Wearable Antenna Measurements in Vicinity of Human Body
	18.8 Phantom Configuration
	18.9 Measurement of Wearable Antennas by Using a Phantom
	18.10 Measurement Results of Wearable Antennas
		18.10.1 Measurements of Antenna Array 1
		18.10.2 Measurements of Antenna Array 2
		18.10.3 Measurements of Antenna Array 3
		18.10.4 Measurements of Antenna Array 4 in a Thinner Belt
		18.10.5 Measurements of Antenna Array 5
	18.11 Fabrication of the Sensor Belt Array
	18.12 Conclusions
	References
Index




نظرات کاربران