دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: الکترونیک: ارتباطات از راه دور ویرایش: نویسندگان: Albert Sabban سری: ISBN (شابک) : 0367409135, 9780367409135 ناشر: CRC Press سال نشر: 2020 تعداد صفحات: 545 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 151 مگابایت
در صورت تبدیل فایل کتاب Wearable Systems and Antennas Technologies for 5G, IOT and Medical Systems به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب سیستمهای پوشیدنی و فناوریهای آنتن برای 5G، IOT و سیستمهای پزشکی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
با توجه به پیشرفت در توسعه سیستم های ارتباطی، اکنون امکان توسعه سیستم های ارتباطی پوشیدنی ارزان قیمت وجود دارد. آنتن پوشیدنی بخشی از لباس یا نزدیک به بدن است و برای مقاصد ارتباطی از جمله ردیابی و ناوبری، محاسبات تلفن همراه و امنیت عمومی استفاده میشود. به عنوان مثال میتوان به ساعتهای هوشمند (با آنتنهای بلوتوث یکپارچه)، عینکها (مانند Google Glass با آنتنهای Wi-Fi و GPS)، دوربینهای اکشن GoPro (با آنتنهای Wi-Fi و بلوتوث) و غیره اشاره کرد. و کاربردهای پزشکی با این حال، توسعه آنتن های پوشیدنی فشرده و کارآمد یکی از چالش های اصلی در توسعه سیستم های ارتباطی و پزشکی پوشیدنی است. فن آوری هایی مانند آنتن های فشرده چاپی و تکنیک های کوچک سازی برای ایجاد آنتن های پوشیدنی کارآمد و کوچک که هدف اصلی این کتاب است، توسعه یافته اند.
هر فصل جزئیات و توضیحات ریاضی کافی را پوشش میدهد تا مهندسان برق، الکترومغناطیسی و بیوپزشکی و دانشجویان و دانشمندان از همه حوزهها بتوانند موضوعات ارائه شده را دنبال و درک کنند. موضوعات و روش های جدید طراحی برای اولین بار در حوزه آنتن های پوشیدنی، آنتن های متامتریال و آنتن های فراکتال ارائه شده است. این کتاب آنتن های پوشیدنی، تکنیک های اندازه گیری RF و نتایج اندازه گیری شده در مجاورت بدن انسان، تنظیمات و ملاحظات طراحی را پوشش می دهد. آنتنهای پوشیدنی و دستگاههای ارائهشده در این کتاب با استفاده از نرمافزار الکترومغناطیسی تمامموج HFSS و ADS 3D تجزیه و تحلیل شدند.
Dr. آلبرت سابان دارای مدرک دکترای مهندسی برق از دانشگاه کلرادو در بولدر، ایالات متحده (1991) و MBA از دانشکده مدیریت، دانشگاه حیفا، اسرائیل (2005) است. او در حال حاضر مدرس ارشد و محقق در گروه مهندسی برق و الکترونیک در کالجهای مهندسی Kinneret و Ort Braude است.
Due to progress in the development of communication systems, it is now possible to develop low-cost wearable communication systems. A wearable antenna is meant to be a part of the clothing or close to the body and used for communication purposes, which include tracking and navigation, mobile computing and public safety. Examples include smartwatches (with integrated Bluetooth antennas), glasses (such as Google Glass with Wi-Fi and GPS antennas), GoPro action cameras (with Wi-Fi and Bluetooth antennas), etc. They are increasingly common in consumer electronics and for healthcare and medical applications. However, the development of compact, efficient wearable antennas is one of the major challenges in the development of wearable communication and medical systems. Technologies such as printed compact antennas and miniaturization techniques have been developed to create efficient, small wearable antennas which are the main objective of this book.
Each chapter covers enough mathematical detail and explanations to enable electrical, electromagnetic and biomedical engineers and students and scientists from all areas to follow and understand the topics presented. New topics and design methods are presented for the first time in the area of wearable antennas, metamaterial antennas and fractal antennas. The book covers wearable antennas, RF measurements techniques and measured results in the vicinity of the human body, setups and design considerations. The wearable antennas and devices presented in this book were analyzed by using HFSS and ADS 3D full-wave electromagnetics software.
Dr. Albert Sabban holds a PhD in Electrical Engineering from the University of Colorado at Boulder, USA (1991), and an MBA from the Faculty of Management, Haifa University, Israel (2005). He is currently a Senior Lecturer and researcher at the Department of Electrical and Electronic Engineering at Kinneret and Ort Braude Engineering Colleges.
Cover Half Title Title Page Copyright Page Dedication Table of Contents Preface Acknowledgments Editor List of Contributors Chapter 1: Wearable Communication and IOT Systems Basics Introduction 1.1 Generations of Mobile Networks 1.1.1 First Generation (1G) 1.1.1.1 1G Basic Features 1.1.1.2 Bits Per Second 1.1.1.3 Global System for Mobile Communications (GSM) 1.1.2 Second Generation (2G) 1.1.2.1 SMS 1.1.2.2 MMS 1.1.2.3 Enhanced Data Rates for GSM Evolution (EDGE) 1.1.2.4 2G Basic Features 1.1.2.5 2.5G and 2.75G 1.1.2.6 2.5G Basic Features 1.1.3 Third Generation (3G) 1.1.3.1 3G Basic Features 1.1.4 Fourth Generation (4G) 1.1.4.1 4G Basic Features 1.1.5 Fifth Generation (5G) 1.1.5.1 5G Basic Features 1.2 Receivers: Definitions and Features 1.2.1 Receivers: Definitions 1.3 Transmitters: Definitions and Features 1.3.1 Amplifier s 1.4 Basic Electromagnetic Wave Definitions 1.4.1 Free Space Propagation 1.5 Friis Transmission Formula 1.6 Communication Systems Link Budget 1.7 Path Loss 1.7.1 Free Space Path Loss 1.7.2 Hata Model 1.8 Receiver Sensitivity 1.8.1 Noise Sources 1.9.2 Basic Receiver Sensitivity Calculation 1.9 Internet of Things (IOT) Basics 1.9.1 IOT Benefits to Companies and Organizations 1.9.2 IOT Advantages 1.9.3 IOT Disadvantages 1.10 Logarithmic Relations 1.11 Wireless Communication System Link Budget, an Example 1.11.1 Mobile Phone Downlink 1.11.2 Mobile Phone Uplink References Chapter 2: Electromagnetics and Transmission Lines for Wearable Communication Systems Introduction 2.1 Electromagnetic Spectrum 2.2 Electromagnetic Fields Theory for Medical and 5G Systems 2.3 Electromagnetic Waves Theory for Medical and 5G Systems 2.3.1 Maxwell’s Equations 2.3.2 Gauss’s Law for Electric Fields 2.3.3 Gauss’s Law for Magnetic Fields 2.3.4 Ampère’sm Law 2.3.5 Faraday’s Law 2.3.6 Wave Equations 2.4 Waves Propagation through Human Body 2.5 Materials 2.6 Transmission Lines Theory 2.6.1 Waves in Transmission Lines 2.7 Matching Techniques 2.7.1 Quarter-Wave Transformers 2.7.2 Wideband Matching – Multi-Section Transformers 2.7.3 Single Stub Matching 2.8 Coaxial Transmission Line 2.8.1 Cutoff Frequency, f c, and Wavelength of Coax Cables 2.9 Microstrip Line 2.9.1 Effective Dielectric Constant 2.9.2 Characteristic Impedance 2.9.3 Higher-Order Transmission Modes in Microstrip Line 2.9.4 Conductor Loss 2.9.5 Dielectric Loss 2.10 Waveguides 2.10.1 TE Waves 2.10.2 TM Waves 2.11 Circular Waveguide 2.11.1 TE Waves in Circular Waveguide 2.11.2 TM Waves in Circular Waveguide References Chapter 3: Antennas for Wearable 5G Communication and Medical Systems 3.1 Introduction to Antennas 3.2 Antenna: Definitions 3.2.1 Steerable Antennas 3.2.2 Types of Antennas 3.2.2.1 Small Antennas for Wearable Communication Systems 3.2.2.2 Aperture Antennas for Base Station Communication Systems 3.3 Dipole Antenna 3.3.1 Radiation from Small Dipole 3.3.1.1 Dipole Radiation Pattern 3.3.1.2 Dipole E Plane Radiation Pattern 3.3.1.3 Dipole H Plane Radiation Pattern 3.3.1.4 Antenna Radiation Pattern 3.3.1.5 Dipole Directivity 3.3.1.6 Antenna Impedance 3.3.1.7 Impedance of a Folded Dipole 3.4 Monopole Antenna for Wearable Communication Systems 3.5 Loop Antennas for Wireless Communication Systems 3.5.1 Duality Relationship between Dipole and Loop Antennas 3.5.2 Medical Applications of Printed Loop Antennas 3.6 Wearable Loop Antennas 3.6.1 Small Wearable Loop Antenna 3.6.2 Wearable Printed Loop Antenna 3.6.3 Wired Loop Antenna 3.7 Wearable Loop Antennas with Ground Plane 3.8 Radiation Pattern of a Loop Antenna near a Metal Sheet 3.9 Conclusions References Chapter 4: Wideband Wearable Antennas for 5G Communication Systems, IOT and Medical Systems 4.1 Introduction 4.2 Printed Wearable Antennas 4.2.1 Double-Layer Printed Wearable Dipole Antennas 4.2.2 Printed Wearable Dual Polarized Dipole Antennas 4.3 Printed Wearable Loop Antenna 4.4 Wearable Microstrip Antennas 4.4.1 Wearable Microstrip Antennas 4.4.2 Transmission Line Model of Microstrip Antennas 4.4.3 Higher-Order Transmission Modes in Microstrip Antennas 4.4.4 Effective Dielectric Constant 4.4.5 Losses in Microstrip Antennas 4.4.5.1 Conductor Loss 4.4.5.2 Dielectric Loss 4.4.6 Patch Radiation Pattern 4.5 Two-Layer Wearable Stacked Microstrip Antennas 4.6 Stacked Mono-Pulse Ku Band Patch Antenna 4.6.1 Rat-Race Coupler 4.7 Wearable PIFA 4.7.1 Grounded Quarter-Wavelength Patch Antenna 4.7.2 A Wearable Double-Layer PIFA 4.8 Conclusions References Chapter 5: Small Wearable Antennas: Experimental Case Studies 5.1 Introduction 5.2 Antenna on Helmet with High F/B Ratio 5.3 Wearable Antenna for High Power Cellular Jammer 5.4 RFID Reader UHF Antenna in the Pocket 5.5 Small Helical Antenna for a Personal Locator Beacon 5.6 VHF Antenna for Personal Communications References Chapter 6: Small Antennas Mounted near the Human Body: Experimental Case Studies 6.1 Introduction 6.2 Wearable UHF RFID Tag on the Neck 6.3 Short-Range Link through the Body at 2.4 GHz 6.4 Measurements of Body Parameters with EKG Pads 6.5 Cellular Antennas on a Phantom 6.6 Small Antenna Inserted into a Phantom 6.6.1 Coil 6.6.2 Monopole References Chapter 7: Wideband RF Technologies for Wearable Communication Systems 7.1 Introduction 7.2 MICs for 5G and Internet of Things Applications 7.3 K Band Compact Receiving Channel 7.3.1 Introduction 7.3.2 Receiving Channel Design 7.3.2.1 Receiving Channel Specifications 7.3.3 Description of the Receiving Channel 7.3.4 Development of the Receiving Channel 7.3.5 Measured Test Results of the Receiving Channel 7.4 MMICs 7.4.1 Features of MMIC Technologies 7.4.2 MMIC Components 7.4.3 Advantages of GaAs versus Silicon 7.4.4 Semiconductor Technology 7.4.5 MMIC Fabrication Process 7.4.5.1 MMIC Fabrication Process List 7.4.5.2 Etching versus Lift-off Removal Processes 7.4.6 Generation of Microwave Signals in Microwave and mm Wave 7.4.7 MMIC Circuit Examples and Applications 7.4.7.1 MMIC Applications 7.5 18–40 GHz Front End 7.5.1 18–40 GHz Front End Requirements 7.5.2 Front End Design 7.5.3 High Gain Front End Module 7.5.4 High Gain Front End Design 7.6 MEMS Technology 7.6.1 MEMS Technology Advantages 7.6.2 MEMS Technology Process 7.6.3 MEMS Components 7.7 W Band MEMS Detection Array 7.7.1 Detection Array Concept 7.7.2 The Array Principle of Operation 7.7.3 W Band Antenna Design 7.7.4 Resistor Design 7.7.5 Array Fabrication and Measurement 7.7.6 Mutual Coupling Effects between Pixels 7.8 MEMS Bowtie Dipole with Bolometer 7.9 LTCC and High-Temperature Co-Fired Ceramic (HTCC) Technology 7.9.1 LTCC and HTCC Technology Process 7.9.2 Advantages of LTCC 7.9.3 Design of High Pass LTCC Filters 7.9.3.1 High Pass Filter Specification 7.10 Comparison of Single-Layer and Multi-Layer Printed Circuits 7.11 A Compact Integrated Transceiver 7.11.1 Introduction 7.11.2 Description of the Receiving Channel 7.11.2.1 Receiving Channel Specifications 7.11.3 Receiving Channel Design and Fabrication 7.11.4 Description of the Transmitting Channel 7.11.4.1 Transmitting Channel Specifications 7.11.4.2 Diplexer Specifications 7.11.5 Transmitting Channel Fabrication 7.11.6 RF Controller 7.12 Conclusions References Chapter 8: Wearable Metamaterial Antennas for Communication, IOT and Medical Systems 8.1 Wireless Body Area Network (WBAN) 8.2 Wearable Antennas 8.3 Materials for Wearable Antennas 8.3.1 Textile 8.3.2 Polymer 8.4 Metamaterials 8.4.1 Artificial Dielectric 8.4.2 FSS 8.4.3 EBG 8.4.4 Negative Index Material 8.4.5 AMC 8.5 Wearable Metamaterial-Based Antennas 8.5.1 Multiband Textile Antennas with Metasurface 8.5.2 Broad/Wideband Textile Antennas with Metasurface 8.6 Conclusion References Chapter 9: Wearable Technologies for 5G, Medical and Sport Applications 9.1 Introduction 9.2 Wearable Technology 9.3 Wearable Medical Systems 9.3.1 Applications of Wearable Medical Systems 9.4 Physiological Parameters Measured by Wearable Medical Systems 9.4.1 Measurement of Blood Pressure 9.4.2 Measurement of Heart Rate 9.4.3 Measurement of Respiration Rate 9.4.4 Measurement of Human Body Temperature 9.4.5 Measurement of Sweat Rate 9.4.6 Measurement of Human Gait 9.4.7 Wearable Devices Tracking and Monitoring Doctors and Patients inside Hospitals 9.5 WBANs 9.6 Wearable WBAN (WWBAN) 9.7 Wearable RFID Technology and Antennas 9.7.1 Introduction 9.7.2 RFID Technology 9.7.3 RFID Standards 9.8 Wearable Dual Polarized 13.5 MHz Compact Printed Antenna 9.9 Varying the Antenna Feed Network 9.10 Wearable Loop Antennas for RFID Applications 9.11 Wearable RFID Antenna Applications 9.12 Conclusions References Chapter 10: Wearable Textile Systems and Antennas for IOT and Medical Applications 10.1 Introduction 10.2 Textile Materials 10.3 Textile Systems and Antennas for IOT and Medical Applications 10.4 Textile Systems and Antennas for Sensing 10.5 Textile Systems and Antennas for Location Tracking 10.6 Textile Rectenna Systems for Energy Harvesting 10.7 Summary References Chapter 11: Development of Wearable Body Area Networks for 5G and Medical Communication Systems 11.1 Introduction 11.2 Cloud Storage and Computing Services for WBANs 11.2.1 Advantages of Cloud Storage 11.2.2 Disadvantages of Cloud Storage 11.2.3 Cloud Computing 11.3 Receiving Channel for Communication and Medical Applications 11.4 Development Process of Wearable Medical and IOT Systems 11.4.1 Steps in System Engineering Process 11.4.1.1 Requirements Analysis 11.4.1.2 System Analysis Control 11.4.1.3 Functional Analysis 11.4.1.4 Design Synthesis 11.5 Conclusions References Chapter 12: Efficient Wearable Metamaterial Antennas for Wireless Communication, IOT, 5G and Medical Systems Introduction 12.1 Wearable Small Metamaterial Antennas for Wireless Communication and Medical Applications 12.1.1 Introduction 12.1.2 Printed Wearable Dipole Antennas with SRRs 12.1.3 Folded Dipole Metamaterial Antenna with SRR 12.2 Stacked Patch Antenna Loaded with SRR 12.3 Patch Antenna Loaded with SRRs 12.4 Metamaterial Antenna Characteristics in Vicinity to the Human Body 12.5 Metamaterial Wearable Antennas 12.6 Wideband Stacked Patch with SRR 12.7 Conclusion References Chapter 13: Wearable Compact Fractal Antennas for 5G and Medical Systems Introduction 13.1 Introduction to Fractal Printed Antennas 13.1.1 Fractal Structures 13.1.2 Fractal Antennas 13.2 Anti-Radar Fractals and/or Multilevel Chaff Dispersers 13.2.1 Geometry of Dispersers 13.3 Definition of Multilevel Fractal Structure 13.4 Advanced Antenna System 13.4.1 Comparison between Euclidean Antennas and Fractal Antenna 13.4.2 Multilevel and Space-Filling Ground Planes for Miniature Antennas 13.4.3 Multilevel Geometry 13.4.4 SFC 13.5 Wearable Fractal Antennas for 5G and IOT Applications 13.5.1 A Wearable 2.5 GHz Fractal Antenna for Wireless Communication 13.5.2 New Stacked Patch 2.5 GHz Fractal Printed Antennas 13.6 X-Band Wearable Fractal Printed Antennas for 5G and IOT Applications 13.7 Wearable Stacked Patch 7.4 GHz Fractal Antenna 13.8 Conclusion References Chapter 14: Reconfigurable Wearable Antennas 14.1 Introduction 14.2 Example Antennas 14.3 Providing Diversity for Off-Body Links 14.3.1 The Design of a Pattern Reconfigurable Antenna Suitable for Smart Glasses 14.3.2 A Wrist Wearable Dual Port Dual Band Stacked Patch Antenna for Wireless Information and Power Transmission 14.4 Switching between On-Body and Off-Body Links 14.4.1 Pattern Diversity Antenna for On-Body and Off-Body Wireless BAN (WBAN) Links 14.4.2 A Radiation Pattern Diversity Antenna Operating at the 2.4 GHz ISM Band 14.5 Switching between In-Body and Off-Body Links 14.6 Conclusion References Chapter 15: Active Wearable Antennas for 5G and Medical Applications Introduction 15.1 Tunable Wearable Printed Antennas for Wireless Communication Systems 15.2 Varactors Basic Theory 15.2.1 Varactor Diode Basics 15.2.2 Types of Varactors 15.3 Dual Polarized Tunable Dipole Antenna 15.4 Wearable Tunable Antennas for 5G, Internet of Things (IOT) and Medical Applications 15.5 Varactors’ Electrical Characteristics 15.6 Measurements of Wearable Tunable Antennas 15.7 Folded Dual Polarized Tunable Antenna for IOT and Medical Applications 15.8 Medical Applications for Wearable Tunable Antennas 15.9 Active Wearable Antennas for 5G, IOT and Medical Applications 15.9.1 Basic Concept of Active Antennas (AAs) 15.9.2 Active Wearable Receiving Loop Antenna 15.9.3 Compact Dual Polarized Receiving AA 15.10 Active Transmitting Antenna 15.10.1 Compact Dual Polarized Active Transmitting Antenna 15.10.2 Active Transmitting Loop Antenna 15.11 Conclusions References Chapter 16: New Wideband Passive and Active Wearable Slot and Notch Antennas for Wireless and Medical 5G Communication Systems Introduction 16.1 Slot Antennas Basic Theory 16.2 Slot Radiation Pattern 16.2.1 Slot E Plane Radiation Pattern 16.2.2 Slot H Plane Radiation Pattern 16.3 Slot Antenna Impedance 16.4 A Wideband Wearable Slot Antenna for Medical and Internet of Things (IOT) Applications 16.5 A Wideband Compact T Shape Wearable Printed Slot Antenna 16.6 Wideband Wearable Notch Antenna for 5G and IOT Communication Systems 16.6.1 Wideband Notch Antenna 2.1–7.8 GHz 16.7 Wearable Tunable Slot Antennas for 5G and IOT Communication Systems 16.8 A Wideband T Shape Tunable Wearable Printed Slot Antenna 16.9 Wearable Active Slot Antennas for 5G Communication and IOT Systems 16.10 Wearable Active T Shape Slot Antennas for 5G Communication Systems 16.11 New Fractal Compact Ultra-Wideband, 1–6 GHz, Notch Antenna 16.12 New Compact Ultra-Wideband Notch Antenna 1.3–3.9 GHz 16.13 New Compact Ultra-Wideband Notch Antenna 5.8–18 GHz 16.14 New Fractal Active Compact Ultra-Wideband, 0.5–3 GHz, Notch Antenna 16.15 New Compact Ultra-Wideband Active Notch Antenna 0.4–3 GHz 16.16 Conclusions References Chapter 17: Design and Measurements Process of Wearable Communication, Medical and IOT Systems 17.1 Introduction 17.2 CAD commercial software 17.2.1 High Frequency Structure Simulator (HFSS) Software 17.2.1.1 High-Frequency EM Solvers 17.2.1.2 Ansys RF Option 17.2.1.3 RF Option Features 17.2.1.4 Circuit Analyses 17.2.2 Advanced Design System (ADS) 17.2.2.1 ADS Features 17.2.2.2 ADS Functionality 17.2.2.3 Simulators 17.2.2.4 Model Sets 17.2.2.5 Design Guides 17.2.2.6 FEM Simulator 17.2.3 CST Software 17.2.3.1 CST Solvers 17.2.3.2 CST Applications 17.2.4 Microwave Office, AWR 17.2.4.1 Microwave Office for MMIC Design 17.2.4.2 System Simulation and Frequency Planning (with VSS) 17.2.4.3 Microwave Office for Module Design 17.2.4.4 ACE Technology 17.3 Modeling and Representation of Wearable Systems with N ports 17.4 Scattering Matrix 17.5 S Parameters Measurements 17.5.1 Types of S Parameters Measurements 17.6 Transmission Measurements 17.7 Output Power and Linearity Measurements 17.8 Power Input Protection Measurement 17.9 Non-Harmonic Spurious Measurements 17.10 Switching Time Measurements 17.11 IP2 Measurements 17.12 IP3 Measurements 17.13 Noise Figure Measurements 17.14 Antenna Measurements 17.14.1 Radiation Pattern Measurements 17.14.2 Directivity and Antenna Effective Area (Aeff) 17.14.3 Radiation Efficiency (α) 17.14.4 Typical Antenna Radiation Pattern 17.14.5 Gain Measurements 17.15 Antenna Range Setup 17.16 Conclusions References Chapter 18: Wearable Antennas in Vicinity of Human Body for 5G, IOT and Medical Applications 18.1 Introduction 18.2 Analysis of Wearable Antennas in Vicinity of Human Body 18.3 Design of Wearable Antennas in Presence of Human Body 18.4 Wearable Antenna Arrays for Medical and 5G Applications 18.5 Small Wide Band Dual Polarized Wearable Printed Antenna 18.6 Wearable Helix Antenna Performance on Human Body 18.7 Wearable Antenna Measurements in Vicinity of Human Body 18.8 Phantom Configuration 18.9 Measurement of Wearable Antennas by Using a Phantom 18.10 Measurement Results of Wearable Antennas 18.10.1 Measurements of Antenna Array 1 18.10.2 Measurements of Antenna Array 2 18.10.3 Measurements of Antenna Array 3 18.10.4 Measurements of Antenna Array 4 in a Thinner Belt 18.10.5 Measurements of Antenna Array 5 18.11 Fabrication of the Sensor Belt Array 18.12 Conclusions References Index