دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Shu Kobayashi, D. A. Alonso سری: Science of synthesis. [Reference library] ISBN (شابک) : 9783131643414, 3131693517 ناشر: G. Thieme سال نشر: 2012 تعداد صفحات: 1015 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 10 مگابایت
در صورت تبدیل فایل کتاب Water in organic synthesis به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب آب در سنتز آلی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
组合 1 [Science of synthesis.] Alonso, D. A._ Kobayashi, Shu - Water in organic synthesis (2012) Cover Abstracs Volume Editor's Preface Water in Organic Synthesis Table of Contents 1 Introduction 1.1 Water-Compatible Lewis Acids 1.2 Lewis Acid–Surfactant Combined Catalysts for Organic Reactions in Water References 2. Structure and Properties of Water General Introduction 2.1 The SingleWater Molecule 2.2 LiquidWater 2.3 Water as a Reaction Medium for Organic Synthesis 2.4 Thermodynamics of Hydration 2.5 Solvent Properties of Water 2.5.1 The Size of the Water Molecule 2.5.2 Polarizability 2.5.3 Solvent Polarity Indicators 2.5.4 Solvatochromic Solvent Parameters 2.5.5 The Solvatochromic Comparison Method: Linear Solvation Energy Relationships 2.5.6 Cohesive Energy Density 2.5.7 Internal Pressure 2.5.8 The Ionic Product of Water: Proton and Hydroxide Ion Mobilities 2.5.9 Water at High and Low Temperatures and Pressures 2.5.10 Water and Deuterium Oxide 2.6 Aqueous Electrolyte Solutions 2.6.1 Ionic Hydration: Hydration Numbers 2.6.2 Dynamics of Ion Hydration 2.7 Hydrophobic Effects 2.7.1 Hydrophobic Hydration 2.7.2 Hydrophobic Interactions 2.8 Organic Reactivity inWater 2.8.1 Catalysis inWater 2.8.2 Micellar Catalysis 2.8.3 Hydrophobic Effects on Reactivity: Initial-State versus Transition-State Effects 2.8.4 Effects of Additives on Reactivity inWater 2.8.4.1 Salt Effects 2.8.4.2 Cosolvent Effects 2.8.5 Reactions “OnWater” 2.8.6 Reactions in SupercriticalWater 2.8.7 Water as a Green Solvent 2.9 Epilogue References 3 Aqueous Media: Reactions of C—C Multiple Bonds 3.1 Asymmetric Oxidation Reactions: Sulfoxidation, Epoxidation, Dihydroxylation, and Aminohydroxylation General Introduction 3.1.1 Catalyst Tuning byWater 3.1.1.1 Enantioselective Oxidation of Sulfides Using aWater-Modified Titanium/Tartrate Catalyst 3.1.1.2 Asymmetric Aerobic Epoxidation Using aWater-Bound Ruthenium–Salen Complex as Catalyst 3.1.2 Enantioselective Oxidation of Sulfides under Aqueous Conditions 3.1.2.1 Enantioselective Oxidation of Sulfides Using Chiral Metal–Schiff Base Catalysts 3.1.2.1.1 Vanadium-Catalyzed Oxidation 3.1.2.1.2 Iron-Catalyzed Oxidation 3.1.2.2 Enantioselective Oxidation of Sulfides Using Metallosalen and Related Complexes as Catalysts 3.1.2.2.1 Manganese–Salen-Catalyzed Oxidation 3.1.2.2.2 Titanium–Salen-Catalyzed Oxidation 3.1.2.2.3 Aluminum–Salalen-Catalyzed Oxidation 3.1.2.3 Asymmetric Oxidation of Sulfides inWater 3.1.2.3.1 Platinum-Catalyzed Asymmetric Oxidation of Sulfides 3.1.2.3.2 Iron–Salan-Catalyzed Oxidation 3.1.3 Enantioselective Epoxidation 3.1.3.1 Asymmetric Epoxidation of Allylic Alcohols 3.1.3.1.1 Asymmetric Epoxidation of Allylic Alcohols under Aqueous Conditions 3.1.3.1.2 Asymmetric Epoxidation of Allylic Alcohols Using Aqueous Hydrogen Peroxide 3.1.3.2 Asymmetric Epoxidation of Unfunctionalized Alkenes 3.1.3.2.1 Metalloporphyrin-Catalyzed Enantioselective Epoxidation 3.1.3.2.2 Enantioselective Epoxidation Using Metal–Salen/Salalen/Salan Complexes as Catalyst 3.1.3.2.2.1 Bioinspired Enantioselective Epoxidation Using Manganese–Salalen or Manganese–Salen Complexes as Catalyst 3.1.3.2.2.1 Enantioselective Epoxidation Using Titanium–Salalen or Titanium–Salan Complexes as Catalyst 3.1.3.2.3 Iron-Catalyzed Enantioselective Epoxidation 3.1.3.2.4 Ruthenium-Catalyzed Enantioselective Epoxidation 3.1.3.2.5 Platinum-Catalyzed Enantioselective Epoxidation 3.1.3.3 Enantioselective Epoxidation Using Organic Compounds as Catalysts 3.1.3.3.1 Chiral Ketone Catalyzed Enantioselective Epoxidation 3.1.3.3.2 Enantioselective Epoxidation of Electron-Deficient Alkenes Using Organocatalysts 3.1.3.3.2.1 Polyamino Acid Catalyzed Asymmetric Epoxidation 3.1.3.3.2.2 Phase-Transfer Catalyst Mediated Epoxidation 3.1.3.3.2.3 Amine-Catalyzed Asymmetric Epoxidation 3.1.4 Enantioselective Dihydroxylation 3.1.4.1 Osmium-Catalyzed Enantioselective Dihydroxylation 3.1.4.2 Iron-Catalyzed Enantioselective Dihydroxylation 3.1.5 Enantioselective Aminohydroxylation 3.1.6 Conclusions References 3.2 Hydrogenation of Alkenes, Alkynes, Arenes, and Hetarenes General Introduction 3.2.1 Catalysts and General Techniques for Hydrogenations inWater 3.2.2 Hydrogenation of Alkenes 3.2.2.1 Alkanes by Hydrogenation of Alkenes withWater-Soluble Analogues of Wilkinson’s Catalyst 3.2.2.1.1 Using Preprepared Rhodium(I)–Sulfonated Triphenylphosphine Catalysts 3.2.2.1.2 Using In Situ Prepared Rhodium(I)–Sulfonated Triphenylphosphine Catalysts 3.2.2.1.3 Using In Situ Prepared Rhodium(I) Catalysts in Microemulsions 3.2.2.2 Alkanes by Hydrogenation of Alkenes with Rhodium(I)-Based Catalysts Attached to Proteins 3.2.2.3 Alkanes by Hydrogenation of Alkenes with Ruthenium(II) Catalysts 3.2.2.4 Alkanes by Hydrogenation of Alkenes with Polymer-Stabilized Colloidal Metal Catalysts 3.2.2.4.1 Using an In Situ Prepared Palladium–Poly(vinylpyrrolidone) Catalyst 3.2.2.4.2 Using a Preprepared Palladium–Poly(vinylpyrrolidone) Catalyst 3.2.2.5 Isotope Labeling by Hydrogenation inWater 3.2.3 Asymmetric Hydrogenation of Alkenes 3.2.3.1 Chiral Alkanes by Hydrogenation of Prochiral Alkenes Catalyzed by Rhodium(I) Complexes 3.2.3.2 Chiral Alkanes by Hydrogenation of Prochiral Alkenes Catalyzed by Ruthenium(II) Complexes 3.2.3.2.1 In Homogeneous Aqueous Solution with a Ruthenium(II)–Tetrasulfonated 2,2ў-Bis(diphenylphosphino)-1,1ў-binaphthyl Catalyst 3.2.3.2.2 Alkanoic Acids by Hydrogenation of Alkenoic Acids with aWater-Soluble Chiral Ruthenium(II)–Bisphosphine Catalyst 3.2.4 Hydrogenation of Dienes 3.2.4.1 Alkenes by Selective Hydrogenation of Dienes with Potassium Pentacyanohydridocobaltate(III) 3.2.4.2 Alkenoic Acids by Selective Hydrogenation of Hexa-2,4-dienoic Acid with a Ruthenium(II)–Sulfonated Phosphine Catalyst 3.2.5 Hydrogenation of Polymers 3.2.5.1 Modified Elastomers by Hydrogenation of Polymers 3.2.6 Hydrogenation of Alkynes 3.2.6.1 Alkenes by Selective Hydrogenation of Alkynes 3.2.6.1.1 Hydrogenation of Pent-2-yne with Polymer-Stabilized Metal Colloids 3.2.6.1.2 Hydrogenation of Diphenylacetylene with a Ruthenium(II)–Sulfonated Triphenylphosphine Catalyst 3.2.7 Hydrogenation of Arenes and Hetarenes 3.2.7.1 Hydrogenation of Benzene Derivatives with a Homogeneous Ruthenium-Based Catalyst 3.2.7.2 Hydrogenation of Aromatics with Stabilized Metal Nanoparticles 3.2.7.2.1 Arene Hydrogenation Catalyzed by Aqueous Solutions of Rhodium(III) Chloride Trihydrate and Aliquat 336 3.2.7.2.2 Arene Hydrogenation Catalyzed by Aqueous Solutions of Rhodium(III) Chloride and N-Alkyl-N-(2-hydroxyethyl)-N,N-dimethylammonium Surfactants 3.2.7.2.3 Hydrogenation of Arenes with Poly(N-vinylpyrrolidone)-Stabilized Ruthenium Nanoparticles 3.2.7.2.4 4-Propylcyclohexanols by Stereoselective Hydrogenation of 4-Propylphenols (Lignin Degradation Model Compounds) 3.2.7.2.5 Hydrogenation of Hetarenes withWater-Soluble Ruthenium(II) Complexes References 3.3 Hydroformylation and Related Reactions General Introduction 3.3.1 Background to Hydroformylation and Related Reactions 3.3.2 Ligands for Hydroformylation in Aqueous Media 3.3.3 Hydroformylation in Aqueous Media 3.3.3.1 Hydroformylation of Higher Alkenes 3.3.3.2 Hydroformylation of Functionalized Alkenes 3.3.3.3 Asymmetric Hydroformylation Reactions 3.3.3.4 Laboratory Techniques 3.3.3.4.1 Biphasic Hydroformylation under Batch Conditions 3.3.3.4.2 Biphasic Hydroformylation under Continuous Conditions 3.3.4 Supported Aqueous-Phase Hydroformylation 3.3.5 Hydrocarboxylation in Aqueous Media References 3.4 Conjugate Addition Reactions General Introduction 3.4.1 C—H Bond Formation 3.4.1.1 Metal-Complex-Mediated Conjugate Reduction 3.4.1.2 Metal-Free Catalytic Conjugate Reduction of Enals 3.4.2 C—C Bond Formation 3.4.2.1 Addition of Alkyl Groups in C—C Bond Formation 3.4.2.1.1 Radical-Mediated Addition of Alkyl Groups 3.4.2.1.2 Metal-Complex-Mediated Addition of Alkyl Groups 3.4.2.1.3 Metal-Free Catalytic Addition of Alkyl Groups 3.4.2.2 Addition of Alkenyl and Aryl Groups in C—C Bond Formation 3.4.2.2.1 Catalyst-Free Addition of Aryl Groups 3.4.2.2.2 Metal-Complex-Catalyzed Addition of Alkenyl and Aryl Groups 3.4.2.2.2.1 Addition of Alkenyl and Aryl Groups to Carbonyl Compounds 3.4.2.2.2.2 Asymmetric Addition of Aryl Groups to Carbonyl Compounds 3.4.2.2.2.3 Addition of Indoles to Electron-Deficient Alkenes 3.4.2.2.3 Metal-Free Catalytic Addition of Aryl Groups 3.4.2.2.3.1 Bronsted Acid Catalyzed Addition of Indoles to Electron-Deficient Alkenes 3.4.2.2.3.2 Asymmetric Addition of Pyrroles and Indoles to Enals via Iminium Catalysis 3.4.2.3 Addition of Alkynyl Groups in C—C Bond Formation 3.4.2.3.1 Metal-Complex-Catalyzed Addition of Alkynyl Groups 3.4.2.4 Addition of Carbonyl Compounds in C—C Bond Formation 3.4.2.4.1 Catalyst-Free Addition of Carbonyl Compounds 3.4.2.4.2 Metal-Complex-Catalyzed Addition of Carbonyl Compounds to Enones 3.4.2.4.3 Metal-Free Catalytic Addition of Carbonyl Compounds 3.4.2.4.3.1 Addition of Carbonyl Compounds to Enals or Enones via Iminium Catalysis 3.4.2.4.3.2 Addition of Carbonyl Compounds to α,β-Unsaturated Esters via Enamine Catalysis 3.4.2.4.3.3 Addition of Carbonyl Compounds to Nitroalkenes via Enamine Catalysis 3.4.2.4.3.4 Addition of Carbonyl Compounds Using Other Metal-Free Catalysts 3.4.3 C—N Bond Formation 3.4.3.1 Catalyst-Free Addition in C—N Bond Formation 3.4.3.1.1 Addition of Amines to Enones 3.4.3.1.2 Addition of Amines to α,β-Unsaturated Carboxylic Acid Derivatives 3.4.3.1.3 Addition of Amines to Acrylonitrile 3.4.3.1.4 Addition of Amines to Nitro, Phosphonate, and Sulfonate Derivatives 3.4.3.2 Metal-Complex-Catalyzed Addition in C—N Bond Formation 3.4.3.3 Metal-Free Catalytic Addition in C—N Bond Formation 3.4.4 C—O Bond Formation 3.4.4.1 Metal-Free Catalytic Addition in C—O Bond Formation 3.4.4.1.1 Phosphine-Catalyzed Hydration 3.4.4.1.2 Asymmetric Addition of Alcohols to Enals via Iminium Catalysis 3.4.5 C—S and C—Se Bond Formation 3.4.5.1 Catalyst-Free Addition in C—S Bond Formation 3.4.5.1.1 Addition of Thiols to Enones and Quinones 3.4.5.1.2 Addition of Thiols to α,β-Unsaturated Carboxylic Acid Derivatives 3.4.5.1.3 Addition of Thiols to Acrylonitrile 3.4.5.1.4 Addition of Thiols to Nitroalkenes 3.4.5.2 Catalytic Addition in C—S Bond Formation 3.4.5.3 C—Se Bond Formation: Reaction of Zinc Selenolates References 3.5 Cyclopropanation Reactions General Introduction 3.5.1 Transition-Metal-Catalyzed Reaction of Diazo Compounds 3.5.1.1 Reaction UsingWater-Soluble Catalysts 3.5.1.1.1 Using pybox–Ruthenium Catalysts 3.5.1.1.2 Using Metalloporphyrin Catalysts 3.5.1.2 Using Diazo Esters in Biphasic Media 3.5.1.3 In Situ Generation of the Diazo Reagent 3.5.2 Triphenylarsine-Catalyzed Cyclopropanation 3.5.3 Radical Reaction from Halogenated Compounds and Zinc Powder References 3.6 Metathesis Reactions General Introduction 3.6.1 Aqueous Alkene Metathesis Using Poorly Defined Catalytic Systems 3.6.1.1 Polymerization of 7-Oxabicyclo[2.2.1]hept-2-ene Derivatives 3.6.1.2 Polymerization of 7-Oxabicyclo[2.2.1]hept-5-ene-2,3-dicarboxylate Derivatives 3.6.2 Aqueous Alkene Metathesis UsingWater-InsolubleWell-Defined Catalysts 3.6.2.1 Applications in Homogeneous Aqueous Solutions 3.6.2.1.1 Ring-Closing Metathesis Using Ruthenium-Based Defined Catalysts in HomogeneousWater/Organic Solvent Mixtures 3.6.2.1.2 Cross Metathesis Using Ruthenium-Based Defined Catalysts in HomogeneousWater/Organic Solvent Mixtures 3.6.2.2 Applications inWater-Containing Heterogeneous Mixtures 3.6.2.2.1 Metathesis in the Presence ofWater without a Cosolvent, Additives, or Surfactants 3.6.2.3 Metathesis in Aqueous Emulsions 3.6.2.3.1 Ring-Opening Metathesis Polymerization in Aqueous Emulsions 3.6.2.3.1.1 Ring-Opening Polymerization Using Dodecyltrimethylammonium Bromide as a Surfactant 3.6.2.3.1.1.1 Polymerization of Bicyclo[2.2.1]hept-2-enes and 7-Oxa Derivatives 3.6.2.3.1.1.2 Polymerization of Bicyclo[2.2.1]hept-5-ene-2-carboxamides and 7-Oxa Derivatives 3.6.2.3.1.1.3 Polymerization of Vancomycin-Based Oligomers 3.6.2.3.1.2 Polymerization Using Sodium Dodecyl Sulfate as a Surfactant 3.6.2.3.1.2.1 Polymerization of Bicyclo[2.2.1]hept-2-ene 3.6.2.3.1.2.2 Polymerization of Cyclooctadiene and Cyclooctene 3.6.2.3.1.3 Polymerizations Using Acacia Gum as a Surfactant 3.6.2.3.2 Ring-Closing Metathesis and Cross Metathesis in Aqueous Emulsions 3.6.2.3.2.1 Ring-Closing Metathesis and Cross Metathesis in Aqueous Emulsions Using Surfactants 3.6.2.3.2.1.1 Ring-Closing Metathesis of Diethyl 2,2-Diallylmalonate Using Sodium Dodecyl Sulfate 3.6.2.3.2.1.2 Homo-Cross Metathesis of Vancomycin Derivatives Using Dodecyltrimethylammonium Bromide 3.6.2.3.2.1.3 Cross Metathesis Using Polyoxyethanyl alpha-Tocopheryl Sebacate 3.6.2.3.2.1.4 Ring-Closing Metathesis Using Polyoxyethanyl alpha-Tocopheryl Sebacate 3.6.2.3.2.1.5 Ring-Closing Metathesis and Cross Metathesis in the Presence of Calix[n]arenes 3.6.2.3.2.2 Ring-Closing Metathesis and Cross Metathesis in Aqueous Emulsions Using Other Methods 3.6.2.3.2.2.1 Non-Water-Soluble Catalysts Embedded in Poly(dimethylsiloxane) 3.6.2.3.2.2.2 Ring-Closing Metathesis and Cross Metathesis Using Dendrimers 3.6.2.4 Applications ofWater-Insoluble Catalysts for Protein Modification 3.6.2.4.1 Cross Metathesis with SBL-156Sac 3.6.2.4.2 Intramolecular Alkene Metathesis in O-Crotylserine Containing cpVenus-2TAG 3.6.3 Tagged Metathesis Catalysts 3.6.3.1 Catalysts Tagged to Hydrophilic Polymers 3.6.3.2 Small-Molecule Polar Catalysts 3.6.3.3 Applications in Heterogeneous Aqueous Media References 4 Aqueous Media: Reactions of Carbonyl and Imino Groups 4.1 Reduction of Carbonyl and Imino Groups General Introduction 4.1.1 Reduction of Carbonyl Groups 4.1.1.1 Hydrogenation of Carbonyl Groups 4.1.1.1.1 Nonasymmetric Hydrogenation of Aldehydes and Ketones 4.1.1.1.2 Hydrogenation of Carbon Dioxide 4.1.1.1.3 Asymmetric Hydrogenation of Ketones 4.1.1.2 Transfer Hydrogenation of Carbonyl Groups 4.1.1.2.1 Nonasymmetric Transfer Hydrogenation 4.1.1.2.2 Asymmetric Transfer Hydrogenation 4.1.1.2.2.1 Of Ketones with Molecular Catalysts 4.1.12.2.2 Of Ketones with Immobilized Catalysts 4.1.1.2.2.3 Of Ketones by Biomimetic Reduction 4.1.1.2.2.4 Of Functionalized Ketones 4.1.2 Reduction of Imino Groups 4.1.2.1 Hydrogenation of Imino Groups 4.1.2.1.1 Nonasymmetric Hydrogenation 4.1.2.1.2 Asymmetric Hydrogenation 4.1.2.2 Transfer Hydrogenation of Imino Groups 4.1.2.2.1 WithWater-Soluble Catalysts 4.1.2.2.2 WithWater-Insoluble Catalysts References 4.2 Alkylation, Allylation, and Benzylation of Carbonyl and Imino Groups General Introduction 4.2.1 Metal-Mediated Alkylation of Carbonyl and Imino Groups 4.2.1.1 Alkylation of Carbonyl Groups 4.2.1.1.1 Metal-Mediated Alkylation Reactions with Alkyl Halides 4.2.1.1.2 Metal-Mediated Reformatsky-Type Reactions 4.2.1.2 Alkylation of Imino Groups 4.2.2 Metal-Mediated Allylation of Carbonyl and Imino Groups 4.2.2.1 Allylation of Carbonyl Groups 4.2.2.1.1 Mediated by Zinc 4.2.2.1.2 Mediated by Tin 4.2.2.1.3 Mediated by Indium 4.2.2.1.4 Mediated by Other Metals 4.2.2.1.5 Regioand Stereoselectivity 4.2.2.1.6 Asymmetric Allylation 4.2.2.2 Allylation of Imino Groups 4.2.3 Metal-Mediated Benzylation of Carbonyl and Imino Groups References 4.3 Arylation, Vinylation, and Alkynylation of Carbonyl and Imino Groups 4.3.1 Arylation and Vinylation of Carbonyl and Imino Groups 4.3.1.1 Arylation and Vinylation of Aldehydes 4.3.1.2 Arylation and Vinylation of Imino Groups 4.3.1.2.1 Asymmetric Arylation of Imino Groups 4.3.2 Alkynylation of Carbonyl and Imino Groups 4.3.2.1 Alkynylation of Carbonyl Compounds 4.3.2.1.1 Alkynylation of Aldehydes 4.3.2.1.2 Alkynylation of Acid Chlorides 4.3.2.1.3 Alkynylation of Ketones 4.3.2.2 Alkynylation of Imino Groups 4.3.2.2.1 Alkynylation of Imines 4.3.2.2.2 Alkynylation of Iminium Ions 4.3.2.2.3 Alkynylation of Acylimines or Acyliminium Ions References 4.4 Aldol Reaction General Introduction 4.4.1 Indirect Catalytic Aldol Addition Reactions 4.4.1.1 Mukaiyama-Type Aldol Reactions 4.4.1.1.1 Application of Bis(4,5-dihydrooxazole) Ligands 4.4.1.1.2 Application of Crown Ether Type Ligands 4.4.1.1.3 Europium-Catalyzed Mukaiyama Aldol Reactions 4.4.1.1.4 Application of a Trost-Type Semicrown Ligand 4.4.1.1.5 Application of Iron(II) and Zinc(II) Complexes 4.4.1.1.6 Hydroxymethylation of Silyl Enol Ethers 4.4.2 Direct Catalytic Aldol Reactions 4.4.2.1 Enamine-Based Direct Aldol Reactions 4.4.2.1.1 Synthesis of 2-[Aryl(hydroxy)methyl]cycloalkanones 4.4.2.1.2 Synthesis of 4-Aryl-4-hydroxybutan-2-ones 4.4.2.1.3 Synthesis of syn-alpha-Methyl-beta-hydroxy Ketones 4.4.2.1.4 Synthesis of Alcohols Containing a Quaternary Carbon Atom 4.4.2.1.5 Synthesis of 1,4-Dihydroxylated Ketones 4.4.2.1.6 Synthesis of syn-3,4-Dihydroxylated Ketones 4.4.2.1.7 Synthesis of 1,3,4-Trihydroxylated Ketones 4.4.2.1.8 Synthesis of 1,3-Dihydroxylated Compounds 4.4.2.1.9 Synthesis of Erythrose and Threose Derivatives 4.4.2.2 Direct Aldol Reactions Assisted by Chiral Metal Complexes 4.4.2.2.1 Synthesis of Hydroxymethyl Ketones References 4.5 Mannich Reaction and Baylis–Hillman Reaction General Introduction 4.5.1 Mannich Reaction 4.5.1.1 Reaction Catalyzed by Organometals 4.5.1.1.1 Lewis Acids 4.5.1.1.1.1 Reaction Using a Preformed Imine or a Preformed Enolate 4.5.1.1.1.2 One-Pot Three-Component Reaction 4.5.1.1.1.3 Stereoselective Methods 4.5.1.1.2 Lewis Bases 4.5.1.2 Reaction Catalyzed by Brшnsted Acids or Bases 4.5.1.2.1 Bronsted Acids 4.5.1.2.2 Bronsted Bases 4.5.1.2.3 Enantioselective Methods 4.5.1.3 Chiral Amine Catalysis via an Enamine Intermediate 4.5.1.3.1 syn-Selective Mannich Reaction 4.5.1.3.2 anti-Selective Mannich Reaction 4.5.1.3.3 Application in Total Synthesis 4.5.1.4 Autocatalysis 4.5.1.5 Biocatalyzed Mannich Reaction 4.5.2 Baylis–Hillman Reaction 4.5.2.1 Stereoselective Baylis–Hillman Reaction 4.5.2.2 Biocatalyzed Baylis–Hillman Reaction References 5 Aqueous Media: Cyclization, Rearrangement, Substitution, Cross Coupling, Oxidation, and Other Reactions 5.1 Cycloaddition and Cyclization Reactions General Introduction 5.1.1 Cycloadditions 5.1.1.1 Diels–Alder Cycloadditions 5.1.1.1.1 Hetero-Diels–Alder Cycloadditions 5.1.1.1.2 Lewis Acid Catalyzed Diels–Alder Cycloadditions 5.1.1.2 1,3-Dipolar Cycloadditions 5.1.1.2.1 Nitrile Imine Cycloadditions 5.1.1.2.2 Nitrile Oxide Cycloadditions 5.1.1.2.3 Diazo Compound Cycloadditions 5.1.1.2.4 Azide Cycloadditions 5.1.1.2.5 Azomethine Ylide Cycloadditions 5.1.1.2.6 Nitrone Cycloadditions 5.1.2 Cyclization Reactions 5.1.2.1 Barbier-Type Cyclizations 5.1.2.2 Epoxide-Opening Cascade Cyclizations 5.1.2.3 Radical Cyclizations References 5.2 Pericyclic Rearrangements: Sigmatropic, Electrocyclic, and Ene Reactions General Introduction 5.2.1 Sigmatropic Rearrangement 5.2.1.1 Claisen Rearrangement 5.2.1.1.1 First Examples inWater 5.2.1.1.2 Rearrangement of Allyl Vinyl Ethers 5.2.1.1.3 Rearrangement of Allyl Aryl Ethers 5.2.1.1.4 Claisen Rearrangement Coupled with Other Reactions 5.2.1.1.5 Aza-Claisen Rearrangements 5.2.1.2 Cope Rearrangement 5.2.1.2.1 Rearrangement of Compounds Containing a Hydrophilic Group 5.2.1.2.2 Catalyzed Rearrangement 5.2.1.2.3 Aza-Cope Rearrangement 5.2.1.3 [1,5] Rearrangement 5.2.1.4 [2,3] Rearrangement 5.2.1.4.1 Rearrangement of Allyl Sulfoxides 5.2.1.4.2 Rearrangement of Sulfonium and Ammonium Ylides 5.2.2 Electrocyclic Rearrangement 5.2.2.1 4π-Electrocyclic Rearrangement 5.2.2.2 6π-Electrocyclic Rearrangement 5.2.3 Ene Reaction 5.2.3.1 Photoinduced Reaction 5.2.3.2 Aza-Ene Reaction 5.2.3.3 Ene-Like Reaction 5.2.3.4 Catalyzed Reactions References 5.3 Allylic and Aromatic Substitution Reactions General Introduction 5.3.1 Allylic Substitution 5.3.1.1 Palladium-Catalyzed Substitution 5.3.1.1.1 UsingWater-Soluble Ligands 5.3.1.1.1.1 Substitution of Allylic Esters 5.3.1.1.1.1.1 Intermolecular Allylic Substitution 5.3.1.1.1.1.2 Intramolecular Allylic Substitution 5.3.1.1.1.2 Substitution of Allylic Alcohols 5.3.1.1.2 Using Amphiphilic Polymeric Ligands 5.3.1.1.3 Using Additives 5.3.1.1.4 Miscellaneous Metal-Catalyzed Systems 5.3.1.2 Metal-Mediated Substitution 5.3.1.3 Allylic Substitution with Calixarene Catalysts 5.3.1.4 Asymmetric Allylic Substitution 5.3.1.4.1 Substitution of Acyclic Allylic Systems 5.3.1.4.2 Substitution of Cyclic Allylic Systems 5.3.2 Aromatic Substitution 5.3.2.1 Electrophilic Aromatic Substitution 5.3.2.1.1 Electrophilic Substitution of Indoles 5.3.2.1.1.1 Synthesis of Bis(indolyl)methanes 5.3.2.1.1.2 Synthesis of 3-Substituted Indoles 5.3.2.1.1.2.1 Nucleophilic Addition of Indoles 5.3.2.1.1.2.2 Michael Addition of Indoles 5.3.2.1.2 Electrophilic Substitution of Benzenes 5.3.2.1.2.1 Indium-Catalyzed Aromatic Substitution 5.3.2.1.2.2 Sulfonic Acid Catalyzed Aromatic Substitution 5.3.2.2 Nucleophilic Aromatic Substitution 5.3.2.2.1 Intermolecular C—N and C—S Bond-Forming Substitution 5.3.2.2.2 Intramolecular C—N and C—S Bond-Forming Substitution References 5.4 Cross-Coupling and Heck Reactions General Introduction 5.4.1 Palladium-Catalyzed Coupling Reactions 5.4.1.1 C—C Bond-Forming Reactions 5.4.1.1.1 Mizoroki–Heck Reaction 5.4.1.1.1.1 Aqueous Ligand-Free Palladium-Catalyzed Heck Coupling 5.4.1.1.1.2 Aqueous Heck Coupling Catalyzed by Palladium–Nitrogen Complexes 5.4.1.1.1.3 Aqueous Palladium-Catalyzed Heck Coupling Employing Hydrophobic Phosphine Ligands 5.4.1.1.1.4 Aqueous Palladium-Catalyzed Heck Couplings Employing Hydrophilic Phosphine Ligands 5.4.1.1.1.5 Aqueous Palladacycle-Catalyzed Heck Coupling 5.4.1.1.1.6 Aqueous Heck Couplings Catalyzed by Supported Palladium Complexes 5.4.1.1.2 Suzuki–Miyaura Coupling 5.4.1.1.2.1 Aqueous Ligand-Free Palladium-Catalyzed Suzuki–Miyaura Coupling 5.4.1.1.2.2 Aqueous Suzuki–Miyaura Coupling Catalyzed by Palladium–Nitrogen Complexes 5.4.1.1.2.3 Aqueous Palladium-Catalyzed Suzuki–Miyaura Coupling Employing Hydrophobic Phosphine or N-Heterocyclic Carbene Ligands 5.4.1.1.2.4 Palladium-Catalyzed Suzuki–Miyaura Coupling Employing Hydrophilic Ligands 5.4.1.1.2.5 Aqueous Palladacycle-Catalyzed Suzuki–Miyaura Coupling 5.4.1.1.2.6 Aqueous Suzuki–Miyaura Couplings Catalyzed by Supported Palladium Complexes 5.4.1.1.3 Sonogashira Coupling 5.4.1.1.3.1 Aqueous Ligand-Free Palladium-Catalyzed Sonogashira Coupling 5.4.1.1.3.2 Aqueous Sonogashira Coupling Catalyzed by Palladium–Nitrogen Complexes 5.4.1.1.3.3 Aqueous Sonogashira Coupling Employing Hydrophobic Phosphine Ligands 5.4.1.1.3.4 Aqueous Sonogashira Coupling Catalyzed by Supported Palladium Complexes 5.4.1.1.4 Hiyama Coupling 5.4.1.1.4.1 Aqueous Ligand-Free Palladium-Catalyzed Hiyama Coupling 5.4.1.1.4.2 Aqueous Hiyama Coupling Catalyzed by Palladium–Nitrogen Complexes 5.4.1.1.4.3 Aqueous Hiyama Coupling Catalyzed by Palladium–Phosphine Complexes 5.4.1.1.4.4 Aqueous Oxime Palladacycle Catalyzed Hiyama Coupling 5.4.1.1.5 Kosugi–Migita–Stille Coupling 5.4.1.1.6 Ullmann-Type Coupling 5.4.1.1.7 Negishi Coupling 5.4.1.1.8 C—H Activation 5.4.1.1.9 Cyanation Reactions 5.4.1.2 Carbon—Heteroatom Bond-Forming Reactions 5.4.1.2.1 Buchwald–Hartwig Amination 5.4.2 Copper-Catalyzed Cross-Coupling Reactions 5.4.2.1 C—C Bond-Forming Reactions 5.4.2.1.1 Sonogashira–Hagihara Reaction 5.4.2.1.2 Cyanation Reactions 5.4.2.2 Carbon—Heteroatom Bond-Forming Reactions 5.4.2.2.1 Aqueous Copper-Catalyzed C—N Bond-Forming Reactions 5.4.2.2.2 Aqueous Copper-Catalyzed C—S Bond-Forming Reactions 5.4.2.2.3 Aqueous Copper-Catalyzed C—O Bond-Forming Reactions References 5.5 Ring Opening of Epoxides and Aziridines General Introduction 5.5.1 Ring-Opening Reactions of Epoxides 5.5.1.1 Epoxide Ring Opening with Oxygen Nucleophiles 5.5.1.1.1 Noncatalyzed Epoxide Ring Opening 5.5.1.1.2 Small Organic Molecule Catalyzed Epoxide Ring Opening 5.5.1.1.3 Metal-Catalyzed Epoxide Ring Opening 5.5.1.1.3.1 Using Zirconium(IV) Tetrakis(dodecyl sulfate) 5.5.1.1.3.2 Using Cobalt–Salen Complexes 5.5.1.1.3.3 Using Scandium–Chiral Bipyridine Complexes 5.5.1.2 Epoxide Ring Opening with Nitrogen Nucleophiles 5.5.1.2.1 Epoxide Ring Opening with Amines 5.2.1.2.1.1 Noncatalyzed Epoxide Ring Opening with Amines inWater 5.5.1.2.1.2 Small Organic Molecule Catalyzed Aminolysis 5.5.1.2.1.3 Metal-Catalyzed Aminolysis 5.5.1.2.1.4 Aminolysis Catalyzed by Chiral Lewis Acids 5.5.1.2.2 Epoxide Ring Opening with Azide 5.5.1.2.2.1 Metal-Catalyzed Azidolysis 5.5.1.2.2.1.1 Using Zirconium(IV) Tetrakis(dodecyl sulfate) 5.5.1.2.2.1.2 Using Copper(II) Nitrate 5.5.1.2.3 Epoxide Ring Opening with Other Nitrogen-Containing Nucleophiles 5.5.1.3 Epoxide Ring Opening with Thiols 5.5.1.3.1 Noncatalyzed Epoxide Ring Opening with Thiols 5.5.1.3.2 Metal-Catalyzed Epoxide Ring Opening with Thiols 5.5.1.3.2.1 Using Indium(III) Chloride 5.5.1.3.2.2 Using Scandium(III) Tris(dodecyl sulfate) 5.5.1.4 Epoxide Ring Opening with Carbon Nucleophiles 5.5.2 Ring-Opening Reactions of Aziridines 5.5.2.1 Aziridine Ring Opening with Oxygen Nucleophiles 5.5.2.1.1 Noncatalyzed Aziridine Ring Opening with Oxygen Nucleophiles 5.5.2.1.2 Aziridine Ring Opening with Oxygen Nucleophiles Promoted by Tributylphosphine and Silica Gel 5.5.2.2 Aziridine Ring Opening with Nitrogen Nucleophiles 5.5.2.2.1 Noncatalyzed Aziridine Ring Opening with Nitrogen Nucleophiles 5.5.2.2.2 Small Organic Molecule Catalyzed Aziridine Ring Opening with Nitrogen Nucleophiles 5.5.2.3 Aziridine Ring Opening with Sulfur Nucleophiles References 5.6 Asymmetric alpha-Functionalization of Carbonyl Compounds and Alkylation of Enolates General Introduction 5.6.1 Asymmetric Alkylation 5.6.1.1 Asymmetric Benzylation of Glycine Derivatives for the Synthesis of Phenylalanine Derivatives 5.6.1.1.1 Asymmetric Alkylation of Glycine Derivatives for the Synthesis of 5.6.1.2 Asymmetric alpha-Alkylation of Ketones 5.6.1.3 Asymmetric Alkylation of beta-Keto Esters 5.6.1.4 Asymmetric Alkylation of Diaryloxazolidine-2,4-diones 5.6.1.5 Asymmetric alpa-Alkylation of Aldehydes with Alcohols 5.6.2 Asymmetric Alkenylation and Alkynylation 5.6.2.1 Asymmetric Alkenylation of β-Keto Esters 5.6.2.1.1 Asymmetric Alkynylation of β-Keto Esters 5.6.3 Asymmetric Oxidation 5.6.3.1 Asymmetric α-Hydroxylation of Ketones 5.6.3.2 Asymmetric α-Oxyamination of Aldehydes 5.6.4 Asymmetric Amination 5.6.4.1 Asymmetric Amination of β-Keto Esters 5.6.5 Asymmetric Fluorination 5.6.5.1 Asymmetric Fluorination of β-Keto Esters References 5.7 Oxidation of Alcohols, Allylic and Benzylic Oxidation, Oxidation of Sulfides General Introduction 5.7.1 Water-Soluble Ligands 5.7.2 Biomimetic Metalloporphyrins and Metallophthalocyanines 5.7.3 Enzymatic Oxidations: Oxidoreductases 5.7.4 Alcohol Oxidations in Aqueous Media 5.7.4.1 Tungsten(VI) Catalysts 5.7.4.2 Palladium–Diamine Complexes as Catalysts 5.7.4.3 Noble Metal Nanoparticles as Quasi-homogeneous Catalysts 5.7.4.4 Ruthenium and Manganese Catalysts 5.7.4.5 Organocatalysts: Hypervalent Iodine Compounds and Stable N-Oxyl Radicals 5.7.4.6 Enzymatic Oxidation of Alcohols 5.7.5 Benzylic and Allylic Oxidations inWater 5.7.5.1 Benzylic Oxidations 5.7.5.2 xidations 5.7.6 Sulfoxidations inWater 5.7.6.1 Tungstenand Vanadium-Catalyzed Oxidations with Hydrogen Peroxide 5.7.6.2 Enantioselective Sulfoxidation with Enzymes 5.7.6.3 Flavins as Organocatalysts for Sulfoxidation 5.7.7 Concluding Remarks References 5.8 Free-Radical Reactions General Introduction 5.8.1 Reductive Processes 5.8.1.1 Reductions with Metal Hydrides 5.8.1.2 Reduction with Phosphinic Acid and Its Derivatives 5.8.1.3 Reductions with Trialkylboranes 5.8.1.3.1 With Trialkylborane–Water Complexes 5.8.1.3.2 Triethylborane-Mediated Radical Addition to a C=N Bond 5.8.1.4 Reduction with Inorganic Reducing Agents 5.8.2 Atom Transfer Processes 5.8.3 Fragmentation Processes References 5.9 Polymerization General Introduction 5.9.1 Living Radical Polymerization 5.9.1.1 Nitroxide-Mediated Polymerization 5.9.1.2 Metal-Catalyzed Living Radical Polymerization or Atom-Transfer Radical Polymerization 5.9.1.3 Reversible Addition–Fragmentation Chain-Transfer Polymerization 5.9.2 Living Radical Suspension Polymerization 5.9.2.1 Iron-Catalyzed Living Radical Polymerization 5.9.2.2 Copper-Catalyzed Living Radical Polymerization 5.9.3 Living Radical Mini-emulsion Polymerization 5.9.3.1 Mini-emulsion with Reverse Atom-Transfer Radical Polymerization 5.9.3.2 Mini-emulsion with AGET Atom-Transfer Radical Polymerization 5.9.3.3 Mini-emulsion with Nitroxide-Mediated Polymerization 5.9.4 Living Radical Emulsion Polymerization 5.9.4.1 Emulsion with Nitroxide-Mediated Polymerization 5.9.4.2 Emulsion with Reversible Addition–Fragmentation Chain-Transfer Polymerization 5.9.5 Homogeneous Aqueous Living Radical Polymerization 5.9.5.1 Homogeneous Aqueous Atom-Transfer Radical Polymerization 5.9.5.2 Homogeneous Aqueous Reversible Addition–Fragmentation Chain-Transfer Polymerization References 6. Special Techniques with Water 6.1 Organic Synthesis “On Water” General Introduction 6.1.1 On-Water Reactions 6.1.1.1 Diels–Alder Reactions 6.1.1.2 Dipolar Cycloadditions 6.1.1.3 Cycloadditions of Azodicarboxylates 6.1.1.4 Claisen Rearrangement Passerini and Ugi Reactions 6.1.1.6 Nucleophilic Opening of Three-Membered Rings 6.1.1.7 Nucleophilic Substitution Reactions 6.1.1.8 Transformations Catalyzed by Transition Metals 6.1.1.9 Metal-Free Carbon—Carbon Bond-Forming Processes 6.1.1.10 Bromination Reactions 6.1.1.11 Oxidations and Reductions 6.1.2 Theoretical Studies 6.1.3 Concluding Remarks References 6.2 Suband SupercriticalWater General Introduction 6.2.1 Properties of Water 6.2.1.1 Macroscopic Properties 6.2.1.2 Microscopic Properties 6.2.1.3 Special Aspects of Heterogeneous Catalysis 6.2.2 Synthesis Reactions 6.2.2.1 Hydrolysis/Water Addition Reactions 6.2.2.2 Condensation/Water Elimination Reactions 6.2.2.3 Addition Reactions 6.2.2.3.1 Hydroformylation 6.2.2.3.2 Diels–Alder Reaction 6.2.2.3.3 Other Addition and Coupling Reactions 6.2.2.4 Rearrangements 6.2.2.5 Oxidations 6.2.2.6 Reductions 6.2.2.6.1 Using Formic Acid/Formates 6.2.2.6.2 Using Hydrogen and a Noble Metal Catalyst 6.2.2.6.3 Using Zinc 6.2.3 Summary 6.2.4 Outlook 6.2.5 Conclusion References 6.3 β-Cyclodextrin Chemistry in Water General Introduction 6.3.1 Cyclodextrins as Mass-Transfer Additives or Organocatalysts for Organic Synthesis inWater 6.3.1.1 Glycoside Hydrolysis Using Modified α- and β-Cyclodextrin Dicyanohydrins in Water 6.3.1.2 Oxidation of Benzylic Alcohols 6.3.1.3 Deprotection of Aromatic Acetals under Neutral Conditions Using β-Cyclodextrin in Water 6.3.1.4 Cyclodextrin-Promoted Synthesis of 3,4,5-Trisubstituted Furan-2(5H)-ones 6.3.1.5 β-Cyclodextrin-Catalyzed Strecker Synthesis of α-Aminonitriles in Water 6.3.1.6 Synthesis of 3-Hydroxy-3-(1H-indol-3-yl)-1,3-dihydro-2H-indol-2-ones under Neutral Conditions in Water 6.3.1.7 Synthesis of Pyrrole-Substituted 1,3-Dihydro-2H-indol-2-ones 6.3.1.8 Friedel–Crafts Alkylation of Indoles 6.3.1.9 Supramolecular Synthesis of Selenazoles Using Selenourea inWater 6.3.1.10 Cyclodextrin-Promoted Nucleophilic Opening of Oxiranes 6.3.1.11 Cyclodextrin-Promoted Michael Reactions of Thiols to Conjugated Alkenes 6.3.1.12 Cyclodextrin-Promoted Mild Oxidation of Alcohols with 1-Hydroxy-1,2-benziodoxol-3(1H)-one 1-Oxide 6.3.1.13 Synthesis of Thiiranes from Oxiranes in the Presence of β-Cyclodextrin in Water 6.3.2 Cyclodextrins as Organocatalyst Solubilizers 6.3.2.1 For Organocatalysts with an Adamantyl Subunit 6.3.2.2 For Organocatalysts with a 4-tert-Butylphenyl Subunit 6.3.3 Cyclodextrins as Mass-Transfer Additives in Aqueous Organometallic Catalysis 6.3.4 Cyclodextrins as Ligands for Metal-Catalyzed Reactions 6.3.5 Cyclodextrins as Stabilizers ofWater-Soluble Noble Metal Nanoparticles 6.3.6 Cyclodextrins as Dispersing Agents of Catalytically Active Solids 6.3.6.1 Cyclodextrins as Dispersing Agents of Supported Metals 6.3.6.2 Cyclodextrins as Dispersing Agents of Metallic Powder References 7. Industrial Application 7.1 Hydroformylation General Introduction 7.1.2 Immobilized Oxo Catalysts 7.1.3 Biphasic Catalyst System 7.1.4 Ruhrchemie/Rhфne-Poulenc Process 7.1.4.1 Reaction 7.1.4.2 Recycle and Recovery of the Aqueous Catalyst 7.1.4.2.1 Recycle 7.1.4.2.2 Recovery 7.1.4.3 Economics of the Process 7.1.4.4 Environmental Aspects 7.1.5 Conclusions References 7.2 Industrial Applications Other than Hydroformylation General Introduction 7.2.1 Classical Reactions 7.2.1.1 Hydrolysis 7.2.1.2 Hydration 7.2.1.3 Homogeneous Mixed-Solvent Systems 7.2.1.4 Heterogeneous Mixed-Solvent Systems 7.2.2 Metal-Catalyzed Reactions 7.2.2.1 Palladium-Catalyzed Coupling Reactions 7.2.2.2 Palladium-Catalyzed Telomerization of Butadiene 7.2.2.3 Lewis Acid Catalysis 7.2.3 Enzymatic Reactions 7.2.3.1 Synthesis of Tamiflu 7.2.3.2 Synthesis of Statins (Lipitor and Crestor) 7.2.3.3 Synthesis of LY300164 7.2.3.4 Synthesis of Pregabalin 7.2.3.5 Synthesis of 6-Aminopenicillanic Acid 7.2.3.6 Synthesis of Rhinovirus Protease Inhibitor Intermediates 7.2.3.7 Synthesis of a GABA Inhibitor 7.2.3.8 Synthesis of an HIV Protease Inhibitor 7.2.3.9 Synthesis of Pelitrexol 7.2.4 Other Reactions 7.2.5 Conclusions and Perspectives References 8. Perspective: The NewWorld of Organic Chemistry UsingWater as Solvent 8.1 Palladium-Catalyzed Allylic Amination Using Aqueous Ammonia 8.2 Aldehyde Allylation with Allylboronates in Aqueous Media 8.3 Catalytic Use of Indium(0) for C—C Bond Transformations inWater 8.4 Conclusions and Outlook References frontmatter-2012 [Science of synthesis.] Alonso, D. A._ Kobayashi, Shu - Water in organic synthesis (2012) Cover Abstracs Volume Editor's Preface Water in Organic Synthesis Table of Contents 1 Introduction 1.1 Water-Compatible Lewis Acids 1.2 Lewis Acid–Surfactant Combined Catalysts for Organic Reactions in Water References 2. Structure and Properties of Water General Introduction 2.1 The SingleWater Molecule 2.2 LiquidWater 2.3 Water as a Reaction Medium for Organic Synthesis 2.4 Thermodynamics of Hydration 2.5 Solvent Properties of Water 2.5.1 The Size of the Water Molecule 2.5.2 Polarizability 2.5.3 Solvent Polarity Indicators 2.5.4 Solvatochromic Solvent Parameters 2.5.5 The Solvatochromic Comparison Method: Linear Solvation Energy Relationships 2.5.6 Cohesive Energy Density 2.5.7 Internal Pressure 2.5.8 The Ionic Product of Water: Proton and Hydroxide Ion Mobilities 2.5.9 Water at High and Low Temperatures and Pressures 2.5.10 Water and Deuterium Oxide 2.6 Aqueous Electrolyte Solutions 2.6.1 Ionic Hydration: Hydration Numbers 2.6.2 Dynamics of Ion Hydration 2.7 Hydrophobic Effects 2.7.1 Hydrophobic Hydration 2.7.2 Hydrophobic Interactions 2.8 Organic Reactivity inWater 2.8.1 Catalysis inWater 2.8.2 Micellar Catalysis 2.8.3 Hydrophobic Effects on Reactivity: Initial-State versus Transition-State Effects 2.8.4 Effects of Additives on Reactivity inWater 2.8.4.1 Salt Effects 2.8.4.2 Cosolvent Effects 2.8.5 Reactions “OnWater” 2.8.6 Reactions in SupercriticalWater 2.8.7 Water as a Green Solvent 2.9 Epilogue References 3 Aqueous Media: Reactions of C—C Multiple Bonds 3.1 Asymmetric Oxidation Reactions: Sulfoxidation, Epoxidation, Dihydroxylation, and Aminohydroxylation General Introduction 3.1.1 Catalyst Tuning byWater 3.1.1.1 Enantioselective Oxidation of Sulfides Using aWater-Modified Titanium/Tartrate Catalyst 3.1.1.2 Asymmetric Aerobic Epoxidation Using aWater-Bound Ruthenium–Salen Complex as Catalyst 3.1.2 Enantioselective Oxidation of Sulfides under Aqueous Conditions 3.1.2.1 Enantioselective Oxidation of Sulfides Using Chiral Metal–Schiff Base Catalysts 3.1.2.1.1 Vanadium-Catalyzed Oxidation 3.1.2.1.2 Iron-Catalyzed Oxidation 3.1.2.2 Enantioselective Oxidation of Sulfides Using Metallosalen and Related Complexes as Catalysts 3.1.2.2.1 Manganese–Salen-Catalyzed Oxidation 3.1.2.2.2 Titanium–Salen-Catalyzed Oxidation 3.1.2.2.3 Aluminum–Salalen-Catalyzed Oxidation 3.1.2.3 Asymmetric Oxidation of Sulfides inWater 3.1.2.3.1 Platinum-Catalyzed Asymmetric Oxidation of Sulfides 3.1.2.3.2 Iron–Salan-Catalyzed Oxidation 3.1.3 Enantioselective Epoxidation 3.1.3.1 Asymmetric Epoxidation of Allylic Alcohols 3.1.3.1.1 Asymmetric Epoxidation of Allylic Alcohols under Aqueous Conditions 3.1.3.1.2 Asymmetric Epoxidation of Allylic Alcohols Using Aqueous Hydrogen Peroxide 3.1.3.2 Asymmetric Epoxidation of Unfunctionalized Alkenes 3.1.3.2.1 Metalloporphyrin-Catalyzed Enantioselective Epoxidation 3.1.3.2.2 Enantioselective Epoxidation Using Metal–Salen/Salalen/Salan Complexes as Catalyst 3.1.3.2.2.1 Bioinspired Enantioselective Epoxidation Using Manganese–Salalen or Manganese–Salen Complexes as Catalyst 3.1.3.2.2.1 Enantioselective Epoxidation Using Titanium–Salalen or Titanium–Salan Complexes as Catalyst 3.1.3.2.3 Iron-Catalyzed Enantioselective Epoxidation 3.1.3.2.4 Ruthenium-Catalyzed Enantioselective Epoxidation 3.1.3.2.5 Platinum-Catalyzed Enantioselective Epoxidation 3.1.3.3 Enantioselective Epoxidation Using Organic Compounds as Catalysts 3.1.3.3.1 Chiral Ketone Catalyzed Enantioselective Epoxidation 3.1.3.3.2 Enantioselective Epoxidation of Electron-Deficient Alkenes Using Organocatalysts 3.1.3.3.2.1 Polyamino Acid Catalyzed Asymmetric Epoxidation 3.1.3.3.2.2 Phase-Transfer Catalyst Mediated Epoxidation 3.1.3.3.2.3 Amine-Catalyzed Asymmetric Epoxidation 3.1.4 Enantioselective Dihydroxylation 3.1.4.1 Osmium-Catalyzed Enantioselective Dihydroxylation 3.1.4.2 Iron-Catalyzed Enantioselective Dihydroxylation 3.1.5 Enantioselective Aminohydroxylation 3.1.6 Conclusions References 3.2 Hydrogenation of Alkenes, Alkynes, Arenes, and Hetarenes General Introduction 3.2.1 Catalysts and General Techniques for Hydrogenations inWater 3.2.2 Hydrogenation of Alkenes 3.2.2.1 Alkanes by Hydrogenation of Alkenes withWater-Soluble Analogues of Wilkinson’s Catalyst 3.2.2.1.1 Using Preprepared Rhodium(I)–Sulfonated Triphenylphosphine Catalysts 3.2.2.1.2 Using In Situ Prepared Rhodium(I)–Sulfonated Triphenylphosphine Catalysts 3.2.2.1.3 Using In Situ Prepared Rhodium(I) Catalysts in Microemulsions 3.2.2.2 Alkanes by Hydrogenation of Alkenes with Rhodium(I)-Based Catalysts Attached to Proteins 3.2.2.3 Alkanes by Hydrogenation of Alkenes with Ruthenium(II) Catalysts 3.2.2.4 Alkanes by Hydrogenation of Alkenes with Polymer-Stabilized Colloidal Metal Catalysts 3.2.2.4.1 Using an In Situ Prepared Palladium–Poly(vinylpyrrolidone) Catalyst 3.2.2.4.2 Using a Preprepared Palladium–Poly(vinylpyrrolidone) Catalyst 3.2.2.5 Isotope Labeling by Hydrogenation inWater 3.2.3 Asymmetric Hydrogenation of Alkenes 3.2.3.1 Chiral Alkanes by Hydrogenation of Prochiral Alkenes Catalyzed by Rhodium(I) Complexes 3.2.3.2 Chiral Alkanes by Hydrogenation of Prochiral Alkenes Catalyzed by Ruthenium(II) Complexes 3.2.3.2.1 In Homogeneous Aqueous Solution with a Ruthenium(II)–Tetrasulfonated 2,2ў-Bis(diphenylphosphino)-1,1ў-binaphthyl Catalyst 3.2.3.2.2 Alkanoic Acids by Hydrogenation of Alkenoic Acids with aWater-Soluble Chiral Ruthenium(II)–Bisphosphine Catalyst 3.2.4 Hydrogenation of Dienes 3.2.4.1 Alkenes by Selective Hydrogenation of Dienes with Potassium Pentacyanohydridocobaltate(III) 3.2.4.2 Alkenoic Acids by Selective Hydrogenation of Hexa-2,4-dienoic Acid with a Ruthenium(II)–Sulfonated Phosphine Catalyst 3.2.5 Hydrogenation of Polymers 3.2.5.1 Modified Elastomers by Hydrogenation of Polymers 3.2.6 Hydrogenation of Alkynes 3.2.6.1 Alkenes by Selective Hydrogenation of Alkynes 3.2.6.1.1 Hydrogenation of Pent-2-yne with Polymer-Stabilized Metal Colloids 3.2.6.1.2 Hydrogenation of Diphenylacetylene with a Ruthenium(II)–Sulfonated Triphenylphosphine Catalyst 3.2.7 Hydrogenation of Arenes and Hetarenes 3.2.7.1 Hydrogenation of Benzene Derivatives with a Homogeneous Ruthenium-Based Catalyst 3.2.7.2 Hydrogenation of Aromatics with Stabilized Metal Nanoparticles 3.2.7.2.1 Arene Hydrogenation Catalyzed by Aqueous Solutions of Rhodium(III) Chloride Trihydrate and Aliquat 336 3.2.7.2.2 Arene Hydrogenation Catalyzed by Aqueous Solutions of Rhodium(III) Chloride and N-Alkyl-N-(2-hydroxyethyl)-N,N-dimethylammonium Surfactants 3.2.7.2.3 Hydrogenation of Arenes with Poly(N-vinylpyrrolidone)-Stabilized Ruthenium Nanoparticles 3.2.7.2.4 4-Propylcyclohexanols by Stereoselective Hydrogenation of 4-Propylphenols (Lignin Degradation Model Compounds) 3.2.7.2.5 Hydrogenation of Hetarenes withWater-Soluble Ruthenium(II) Complexes References 3.3 Hydroformylation and Related Reactions General Introduction 3.3.1 Background to Hydroformylation and Related Reactions 3.3.2 Ligands for Hydroformylation in Aqueous Media 3.3.3 Hydroformylation in Aqueous Media 3.3.3.1 Hydroformylation of Higher Alkenes 3.3.3.2 Hydroformylation of Functionalized Alkenes 3.3.3.3 Asymmetric Hydroformylation Reactions 3.3.3.4 Laboratory Techniques 3.3.3.4.1 Biphasic Hydroformylation under Batch Conditions 3.3.3.4.2 Biphasic Hydroformylation under Continuous Conditions 3.3.4 Supported Aqueous-Phase Hydroformylation 3.3.5 Hydrocarboxylation in Aqueous Media References 3.4 Conjugate Addition Reactions General Introduction 3.4.1 C—H Bond Formation 3.4.1.1 Metal-Complex-Mediated Conjugate Reduction 3.4.1.2 Metal-Free Catalytic Conjugate Reduction of Enals 3.4.2 C—C Bond Formation 3.4.2.1 Addition of Alkyl Groups in C—C Bond Formation 3.4.2.1.1 Radical-Mediated Addition of Alkyl Groups 3.4.2.1.2 Metal-Complex-Mediated Addition of Alkyl Groups 3.4.2.1.3 Metal-Free Catalytic Addition of Alkyl Groups 3.4.2.2 Addition of Alkenyl and Aryl Groups in C—C Bond Formation 3.4.2.2.1 Catalyst-Free Addition of Aryl Groups 3.4.2.2.2 Metal-Complex-Catalyzed Addition of Alkenyl and Aryl Groups 3.4.2.2.2.1 Addition of Alkenyl and Aryl Groups to Carbonyl Compounds 3.4.2.2.2.2 Asymmetric Addition of Aryl Groups to Carbonyl Compounds 3.4.2.2.2.3 Addition of Indoles to Electron-Deficient Alkenes 3.4.2.2.3 Metal-Free Catalytic Addition of Aryl Groups 3.4.2.2.3.1 Bronsted Acid Catalyzed Addition of Indoles to Electron-Deficient Alkenes 3.4.2.2.3.2 Asymmetric Addition of Pyrroles and Indoles to Enals via Iminium Catalysis 3.4.2.3 Addition of Alkynyl Groups in C—C Bond Formation 3.4.2.3.1 Metal-Complex-Catalyzed Addition of Alkynyl Groups 3.4.2.4 Addition of Carbonyl Compounds in C—C Bond Formation 3.4.2.4.1 Catalyst-Free Addition of Carbonyl Compounds 3.4.2.4.2 Metal-Complex-Catalyzed Addition of Carbonyl Compounds to Enones 3.4.2.4.3 Metal-Free Catalytic Addition of Carbonyl Compounds 3.4.2.4.3.1 Addition of Carbonyl Compounds to Enals or Enones via Iminium Catalysis 3.4.2.4.3.2 Addition of Carbonyl Compounds to α,β-Unsaturated Esters via Enamine Catalysis 3.4.2.4.3.3 Addition of Carbonyl Compounds to Nitroalkenes via Enamine Catalysis 3.4.2.4.3.4 Addition of Carbonyl Compounds Using Other Metal-Free Catalysts 3.4.3 C—N Bond Formation 3.4.3.1 Catalyst-Free Addition in C—N Bond Formation 3.4.3.1.1 Addition of Amines to Enones 3.4.3.1.2 Addition of Amines to α,β-Unsaturated Carboxylic Acid Derivatives 3.4.3.1.3 Addition of Amines to Acrylonitrile 3.4.3.1.4 Addition of Amines to Nitro, Phosphonate, and Sulfonate Derivatives 3.4.3.2 Metal-Complex-Catalyzed Addition in C—N Bond Formation 3.4.3.3 Metal-Free Catalytic Addition in C—N Bond Formation 3.4.4 C—O Bond Formation 3.4.4.1 Metal-Free Catalytic Addition in C—O Bond Formation 3.4.4.1.1 Phosphine-Catalyzed Hydration 3.4.4.1.2 Asymmetric Addition of Alcohols to Enals via Iminium Catalysis 3.4.5 C—S and C—Se Bond Formation 3.4.5.1 Catalyst-Free Addition in C—S Bond Formation 3.4.5.1.1 Addition of Thiols to Enones and Quinones 3.4.5.1.2 Addition of Thiols to α,β-Unsaturated Carboxylic Acid Derivatives 3.4.5.1.3 Addition of Thiols to Acrylonitrile 3.4.5.1.4 Addition of Thiols to Nitroalkenes 3.4.5.2 Catalytic Addition in C—S Bond Formation 3.4.5.3 C—Se Bond Formation: Reaction of Zinc Selenolates References 3.5 Cyclopropanation Reactions General Introduction 3.5.1 Transition-Metal-Catalyzed Reaction of Diazo Compounds 3.5.1.1 Reaction UsingWater-Soluble Catalysts 3.5.1.1.1 Using pybox–Ruthenium Catalysts 3.5.1.1.2 Using Metalloporphyrin Catalysts 3.5.1.2 Using Diazo Esters in Biphasic Media 3.5.1.3 In Situ Generation of the Diazo Reagent 3.5.2 Triphenylarsine-Catalyzed Cyclopropanation 3.5.3 Radical Reaction from Halogenated Compounds and Zinc Powder References 3.6 Metathesis Reactions General Introduction 3.6.1 Aqueous Alkene Metathesis Using Poorly Defined Catalytic Systems 3.6.1.1 Polymerization of 7-Oxabicyclo[2.2.1]hept-2-ene Derivatives 3.6.1.2 Polymerization of 7-Oxabicyclo[2.2.1]hept-5-ene-2,3-dicarboxylate Derivatives 3.6.2 Aqueous Alkene Metathesis UsingWater-InsolubleWell-Defined Catalysts 3.6.2.1 Applications in Homogeneous Aqueous Solutions 3.6.2.1.1 Ring-Closing Metathesis Using Ruthenium-Based Defined Catalysts in HomogeneousWater/Organic Solvent Mixtures 3.6.2.1.2 Cross Metathesis Using Ruthenium-Based Defined Catalysts in HomogeneousWater/Organic Solvent Mixtures 3.6.2.2 Applications inWater-Containing Heterogeneous Mixtures 3.6.2.2.1 Metathesis in the Presence ofWater without a Cosolvent, Additives, or Surfactants 3.6.2.3 Metathesis in Aqueous Emulsions 3.6.2.3.1 Ring-Opening Metathesis Polymerization in Aqueous Emulsions 3.6.2.3.1.1 Ring-Opening Polymerization Using Dodecyltrimethylammonium Bromide as a Surfactant 3.6.2.3.1.1.1 Polymerization of Bicyclo[2.2.1]hept-2-enes and 7-Oxa Derivatives 3.6.2.3.1.1.2 Polymerization of Bicyclo[2.2.1]hept-5-ene-2-carboxamides and 7-Oxa Derivatives 3.6.2.3.1.1.3 Polymerization of Vancomycin-Based Oligomers 3.6.2.3.1.2 Polymerization Using Sodium Dodecyl Sulfate as a Surfactant 3.6.2.3.1.2.1 Polymerization of Bicyclo[2.2.1]hept-2-ene 3.6.2.3.1.2.2 Polymerization of Cyclooctadiene and Cyclooctene 3.6.2.3.1.3 Polymerizations Using Acacia Gum as a Surfactant 3.6.2.3.2 Ring-Closing Metathesis and Cross Metathesis in Aqueous Emulsions 3.6.2.3.2.1 Ring-Closing Metathesis and Cross Metathesis in Aqueous Emulsions Using Surfactants 3.6.2.3.2.1.1 Ring-Closing Metathesis of Diethyl 2,2-Diallylmalonate Using Sodium Dodecyl Sulfate 3.6.2.3.2.1.2 Homo-Cross Metathesis of Vancomycin Derivatives Using Dodecyltrimethylammonium Bromide 3.6.2.3.2.1.3 Cross Metathesis Using Polyoxyethanyl alpha-Tocopheryl Sebacate 3.6.2.3.2.1.4 Ring-Closing Metathesis Using Polyoxyethanyl alpha-Tocopheryl Sebacate 3.6.2.3.2.1.5 Ring-Closing Metathesis and Cross Metathesis in the Presence of Calix[n]arenes 3.6.2.3.2.2 Ring-Closing Metathesis and Cross Metathesis in Aqueous Emulsions Using Other Methods 3.6.2.3.2.2.1 Non-Water-Soluble Catalysts Embedded in Poly(dimethylsiloxane) 3.6.2.3.2.2.2 Ring-Closing Metathesis and Cross Metathesis Using Dendrimers 3.6.2.4 Applications ofWater-Insoluble Catalysts for Protein Modification 3.6.2.4.1 Cross Metathesis with SBL-156Sac 3.6.2.4.2 Intramolecular Alkene Metathesis in O-Crotylserine Containing cpVenus-2TAG 3.6.3 Tagged Metathesis Catalysts 3.6.3.1 Catalysts Tagged to Hydrophilic Polymers 3.6.3.2 Small-Molecule Polar Catalysts 3.6.3.3 Applications in Heterogeneous Aqueous Media References 4 Aqueous Media: Reactions of Carbonyl and Imino Groups 4.1 Reduction of Carbonyl and Imino Groups General Introduction 4.1.1 Reduction of Carbonyl Groups 4.1.1.1 Hydrogenation of Carbonyl Groups 4.1.1.1.1 Nonasymmetric Hydrogenation of Aldehydes and Ketones 4.1.1.1.2 Hydrogenation of Carbon Dioxide 4.1.1.1.3 Asymmetric Hydrogenation of Ketones 4.1.1.2 Transfer Hydrogenation of Carbonyl Groups 4.1.1.2.1 Nonasymmetric Transfer Hydrogenation 4.1.1.2.2 Asymmetric Transfer Hydrogenation 4.1.1.2.2.1 Of Ketones with Molecular Catalysts 4.1.12.2.2 Of Ketones with Immobilized Catalysts 4.1.1.2.2.3 Of Ketones by Biomimetic Reduction 4.1.1.2.2.4 Of Functionalized Ketones 4.1.2 Reduction of Imino Groups 4.1.2.1 Hydrogenation of Imino Groups 4.1.2.1.1 Nonasymmetric Hydrogenation 4.1.2.1.2 Asymmetric Hydrogenation 4.1.2.2 Transfer Hydrogenation of Imino Groups 4.1.2.2.1 WithWater-Soluble Catalysts 4.1.2.2.2 WithWater-Insoluble Catalysts References 4.2 Alkylation, Allylation, and Benzylation of Carbonyl and Imino Groups General Introduction 4.2.1 Metal-Mediated Alkylation of Carbonyl and Imino Groups 4.2.1.1 Alkylation of Carbonyl Groups 4.2.1.1.1 Metal-Mediated Alkylation Reactions with Alkyl Halides 4.2.1.1.2 Metal-Mediated Reformatsky-Type Reactions 4.2.1.2 Alkylation of Imino Groups 4.2.2 Metal-Mediated Allylation of Carbonyl and Imino Groups 4.2.2.1 Allylation of Carbonyl Groups 4.2.2.1.1 Mediated by Zinc 4.2.2.1.2 Mediated by Tin 4.2.2.1.3 Mediated by Indium 4.2.2.1.4 Mediated by Other Metals 4.2.2.1.5 Regioand Stereoselectivity 4.2.2.1.6 Asymmetric Allylation 4.2.2.2 Allylation of Imino Groups 4.2.3 Metal-Mediated Benzylation of Carbonyl and Imino Groups References 4.3 Arylation, Vinylation, and Alkynylation of Carbonyl and Imino Groups 4.3.1 Arylation and Vinylation of Carbonyl and Imino Groups 4.3.1.1 Arylation and Vinylation of Aldehydes 4.3.1.2 Arylation and Vinylation of Imino Groups 4.3.1.2.1 Asymmetric Arylation of Imino Groups 4.3.2 Alkynylation of Carbonyl and Imino Groups 4.3.2.1 Alkynylation of Carbonyl Compounds 4.3.2.1.1 Alkynylation of Aldehydes 4.3.2.1.2 Alkynylation of Acid Chlorides 4.3.2.1.3 Alkynylation of Ketones 4.3.2.2 Alkynylation of Imino Groups 4.3.2.2.1 Alkynylation of Imines 4.3.2.2.2 Alkynylation of Iminium Ions 4.3.2.2.3 Alkynylation of Acylimines or Acyliminium Ions References 4.4 Aldol Reaction General Introduction 4.4.1 Indirect Catalytic Aldol Addition Reactions 4.4.1.1 Mukaiyama-Type Aldol Reactions 4.4.1.1.1 Application of Bis(4,5-dihydrooxazole) Ligands 4.4.1.1.2 Application of Crown Ether Type Ligands 4.4.1.1.3 Europium-Catalyzed Mukaiyama Aldol Reactions 4.4.1.1.4 Application of a Trost-Type Semicrown Ligand 4.4.1.1.5 Application of Iron(II) and Zinc(II) Complexes 4.4.1.1.6 Hydroxymethylation of Silyl Enol Ethers 4.4.2 Direct Catalytic Aldol Reactions 4.4.2.1 Enamine-Based Direct Aldol Reactions 4.4.2.1.1 Synthesis of 2-[Aryl(hydroxy)methyl]cycloalkanones 4.4.2.1.2 Synthesis of 4-Aryl-4-hydroxybutan-2-ones 4.4.2.1.3 Synthesis of syn-alpha-Methyl-beta-hydroxy Ketones 4.4.2.1.4 Synthesis of Alcohols Containing a Quaternary Carbon Atom 4.4.2.1.5 Synthesis of 1,4-Dihydroxylated Ketones 4.4.2.1.6 Synthesis of syn-3,4-Dihydroxylated Ketones 4.4.2.1.7 Synthesis of 1,3,4-Trihydroxylated Ketones 4.4.2.1.8 Synthesis of 1,3-Dihydroxylated Compounds 4.4.2.1.9 Synthesis of Erythrose and Threose Derivatives 4.4.2.2 Direct Aldol Reactions Assisted by Chiral Metal Complexes 4.4.2.2.1 Synthesis of Hydroxymethyl Ketones References 4.5 Mannich Reaction and Baylis–Hillman Reaction General Introduction 4.5.1 Mannich Reaction 4.5.1.1 Reaction Catalyzed by Organometals 4.5.1.1.1 Lewis Acids 4.5.1.1.1.1 Reaction Using a Preformed Imine or a Preformed Enolate 4.5.1.1.1.2 One-Pot Three-Component Reaction 4.5.1.1.1.3 Stereoselective Methods 4.5.1.1.2 Lewis Bases 4.5.1.2 Reaction Catalyzed by Brшnsted Acids or Bases 4.5.1.2.1 Bronsted Acids 4.5.1.2.2 Bronsted Bases 4.5.1.2.3 Enantioselective Methods 4.5.1.3 Chiral Amine Catalysis via an Enamine Intermediate 4.5.1.3.1 syn-Selective Mannich Reaction 4.5.1.3.2 anti-Selective Mannich Reaction 4.5.1.3.3 Application in Total Synthesis 4.5.1.4 Autocatalysis 4.5.1.5 Biocatalyzed Mannich Reaction 4.5.2 Baylis–Hillman Reaction 4.5.2.1 Stereoselective Baylis–Hillman Reaction 4.5.2.2 Biocatalyzed Baylis–Hillman Reaction References 5 Aqueous Media: Cyclization, Rearrangement, Substitution, Cross Coupling, Oxidation, and Other Reactions 5.1 Cycloaddition and Cyclization Reactions General Introduction 5.1.1 Cycloadditions 5.1.1.1 Diels–Alder Cycloadditions 5.1.1.1.1 Hetero-Diels–Alder Cycloadditions 5.1.1.1.2 Lewis Acid Catalyzed Diels–Alder Cycloadditions 5.1.1.2 1,3-Dipolar Cycloadditions 5.1.1.2.1 Nitrile Imine Cycloadditions 5.1.1.2.2 Nitrile Oxide Cycloadditions 5.1.1.2.3 Diazo Compound Cycloadditions 5.1.1.2.4 Azide Cycloadditions 5.1.1.2.5 Azomethine Ylide Cycloadditions 5.1.1.2.6 Nitrone Cycloadditions 5.1.2 Cyclization Reactions 5.1.2.1 Barbier-Type Cyclizations 5.1.2.2 Epoxide-Opening Cascade Cyclizations 5.1.2.3 Radical Cyclizations References 5.2 Pericyclic Rearrangements: Sigmatropic, Electrocyclic, and Ene Reactions General Introduction 5.2.1 Sigmatropic Rearrangement 5.2.1.1 Claisen Rearrangement 5.2.1.1.1 First Examples inWater 5.2.1.1.2 Rearrangement of Allyl Vinyl Ethers 5.2.1.1.3 Rearrangement of Allyl Aryl Ethers 5.2.1.1.4 Claisen Rearrangement Coupled with Other Reactions 5.2.1.1.5 Aza-Claisen Rearrangements 5.2.1.2 Cope Rearrangement 5.2.1.2.1 Rearrangement of Compounds Containing a Hydrophilic Group 5.2.1.2.2 Catalyzed Rearrangement 5.2.1.2.3 Aza-Cope Rearrangement 5.2.1.3 [1,5] Rearrangement 5.2.1.4 [2,3] Rearrangement 5.2.1.4.1 Rearrangement of Allyl Sulfoxides 5.2.1.4.2 Rearrangement of Sulfonium and Ammonium Ylides 5.2.2 Electrocyclic Rearrangement 5.2.2.1 4π-Electrocyclic Rearrangement 5.2.2.2 6π-Electrocyclic Rearrangement 5.2.3 Ene Reaction 5.2.3.1 Photoinduced Reaction 5.2.3.2 Aza-Ene Reaction 5.2.3.3 Ene-Like Reaction 5.2.3.4 Catalyzed Reactions References 5.3 Allylic and Aromatic Substitution Reactions General Introduction 5.3.1 Allylic Substitution 5.3.1.1 Palladium-Catalyzed Substitution 5.3.1.1.1 UsingWater-Soluble Ligands 5.3.1.1.1.1 Substitution of Allylic Esters 5.3.1.1.1.1.1 Intermolecular Allylic Substitution 5.3.1.1.1.1.2 Intramolecular Allylic Substitution 5.3.1.1.1.2 Substitution of Allylic Alcohols 5.3.1.1.2 Using Amphiphilic Polymeric Ligands 5.3.1.1.3 Using Additives 5.3.1.1.4 Miscellaneous Metal-Catalyzed Systems 5.3.1.2 Metal-Mediated Substitution 5.3.1.3 Allylic Substitution with Calixarene Catalysts 5.3.1.4 Asymmetric Allylic Substitution 5.3.1.4.1 Substitution of Acyclic Allylic Systems 5.3.1.4.2 Substitution of Cyclic Allylic Systems 5.3.2 Aromatic Substitution 5.3.2.1 Electrophilic Aromatic Substitution 5.3.2.1.1 Electrophilic Substitution of Indoles 5.3.2.1.1.1 Synthesis of Bis(indolyl)methanes 5.3.2.1.1.2 Synthesis of 3-Substituted Indoles 5.3.2.1.1.2.1 Nucleophilic Addition of Indoles 5.3.2.1.1.2.2 Michael Addition of Indoles 5.3.2.1.2 Electrophilic Substitution of Benzenes 5.3.2.1.2.1 Indium-Catalyzed Aromatic Substitution 5.3.2.1.2.2 Sulfonic Acid Catalyzed Aromatic Substitution 5.3.2.2 Nucleophilic Aromatic Substitution 5.3.2.2.1 Intermolecular C—N and C—S Bond-Forming Substitution 5.3.2.2.2 Intramolecular C—N and C—S Bond-Forming Substitution References 5.4 Cross-Coupling and Heck Reactions General Introduction 5.4.1 Palladium-Catalyzed Coupling Reactions 5.4.1.1 C—C Bond-Forming Reactions 5.4.1.1.1 Mizoroki–Heck Reaction 5.4.1.1.1.1 Aqueous Ligand-Free Palladium-Catalyzed Heck Coupling 5.4.1.1.1.2 Aqueous Heck Coupling Catalyzed by Palladium–Nitrogen Complexes 5.4.1.1.1.3 Aqueous Palladium-Catalyzed Heck Coupling Employing Hydrophobic Phosphine Ligands 5.4.1.1.1.4 Aqueous Palladium-Catalyzed Heck Couplings Employing Hydrophilic Phosphine Ligands 5.4.1.1.1.5 Aqueous Palladacycle-Catalyzed Heck Coupling 5.4.1.1.1.6 Aqueous Heck Couplings Catalyzed by Supported Palladium Complexes 5.4.1.1.2 Suzuki–Miyaura Coupling 5.4.1.1.2.1 Aqueous Ligand-Free Palladium-Catalyzed Suzuki–Miyaura Coupling 5.4.1.1.2.2 Aqueous Suzuki–Miyaura Coupling Catalyzed by Palladium–Nitrogen Complexes 5.4.1.1.2.3 Aqueous Palladium-Catalyzed Suzuki–Miyaura Coupling Employing Hydrophobic Phosphine or N-Heterocyclic Carbene Ligands 5.4.1.1.2.4 Palladium-Catalyzed Suzuki–Miyaura Coupling Employing Hydrophilic Ligands 5.4.1.1.2.5 Aqueous Palladacycle-Catalyzed Suzuki–Miyaura Coupling 5.4.1.1.2.6 Aqueous Suzuki–Miyaura Couplings Catalyzed by Supported Palladium Complexes 5.4.1.1.3 Sonogashira Coupling 5.4.1.1.3.1 Aqueous Ligand-Free Palladium-Catalyzed Sonogashira Coupling 5.4.1.1.3.2 Aqueous Sonogashira Coupling Catalyzed by Palladium–Nitrogen Complexes 5.4.1.1.3.3 Aqueous Sonogashira Coupling Employing Hydrophobic Phosphine Ligands 5.4.1.1.3.4 Aqueous Sonogashira Coupling Catalyzed by Supported Palladium Complexes 5.4.1.1.4 Hiyama Coupling 5.4.1.1.4.1 Aqueous Ligand-Free Palladium-Catalyzed Hiyama Coupling 5.4.1.1.4.2 Aqueous Hiyama Coupling Catalyzed by Palladium–Nitrogen Complexes 5.4.1.1.4.3 Aqueous Hiyama Coupling Catalyzed by Palladium–Phosphine Complexes 5.4.1.1.4.4 Aqueous Oxime Palladacycle Catalyzed Hiyama Coupling 5.4.1.1.5 Kosugi–Migita–Stille Coupling 5.4.1.1.6 Ullmann-Type Coupling 5.4.1.1.7 Negishi Coupling 5.4.1.1.8 C—H Activation 5.4.1.1.9 Cyanation Reactions 5.4.1.2 Carbon—Heteroatom Bond-Forming Reactions 5.4.1.2.1 Buchwald–Hartwig Amination 5.4.2 Copper-Catalyzed Cross-Coupling Reactions 5.4.2.1 C—C Bond-Forming Reactions 5.4.2.1.1 Sonogashira–Hagihara Reaction 5.4.2.1.2 Cyanation Reactions 5.4.2.2 Carbon—Heteroatom Bond-Forming Reactions 5.4.2.2.1 Aqueous Copper-Catalyzed C—N Bond-Forming Reactions 5.4.2.2.2 Aqueous Copper-Catalyzed C—S Bond-Forming Reactions 5.4.2.2.3 Aqueous Copper-Catalyzed C—O Bond-Forming Reactions References 5.5 Ring Opening of Epoxides and Aziridines General Introduction 5.5.1 Ring-Opening Reactions of Epoxides 5.5.1.1 Epoxide Ring Opening with Oxygen Nucleophiles 5.5.1.1.1 Noncatalyzed Epoxide Ring Opening 5.5.1.1.2 Small Organic Molecule Catalyzed Epoxide Ring Opening 5.5.1.1.3 Metal-Catalyzed Epoxide Ring Opening 5.5.1.1.3.1 Using Zirconium(IV) Tetrakis(dodecyl sulfate) 5.5.1.1.3.2 Using Cobalt–Salen Complexes 5.5.1.1.3.3 Using Scandium–Chiral Bipyridine Complexes 5.5.1.2 Epoxide Ring Opening with Nitrogen Nucleophiles 5.5.1.2.1 Epoxide Ring Opening with Amines 5.2.1.2.1.1 Noncatalyzed Epoxide Ring Opening with Amines inWater 5.5.1.2.1.2 Small Organic Molecule Catalyzed Aminolysis 5.5.1.2.1.3 Metal-Catalyzed Aminolysis 5.5.1.2.1.4 Aminolysis Catalyzed by Chiral Lewis Acids 5.5.1.2.2 Epoxide Ring Opening with Azide 5.5.1.2.2.1 Metal-Catalyzed Azidolysis 5.5.1.2.2.1.1 Using Zirconium(IV) Tetrakis(dodecyl sulfate) 5.5.1.2.2.1.2 Using Copper(II) Nitrate 5.5.1.2.3 Epoxide Ring Opening with Other Nitrogen-Containing Nucleophiles 5.5.1.3 Epoxide Ring Opening with Thiols 5.5.1.3.1 Noncatalyzed Epoxide Ring Opening with Thiols 5.5.1.3.2 Metal-Catalyzed Epoxide Ring Opening with Thiols 5.5.1.3.2.1 Using Indium(III) Chloride 5.5.1.3.2.2 Using Scandium(III) Tris(dodecyl sulfate) 5.5.1.4 Epoxide Ring Opening with Carbon Nucleophiles 5.5.2 Ring-Opening Reactions of Aziridines 5.5.2.1 Aziridine Ring Opening with Oxygen Nucleophiles 5.5.2.1.1 Noncatalyzed Aziridine Ring Opening with Oxygen Nucleophiles 5.5.2.1.2 Aziridine Ring Opening with Oxygen Nucleophiles Promoted by Tributylphosphine and Silica Gel 5.5.2.2 Aziridine Ring Opening with Nitrogen Nucleophiles 5.5.2.2.1 Noncatalyzed Aziridine Ring Opening with Nitrogen Nucleophiles 5.5.2.2.2 Small Organic Molecule Catalyzed Aziridine Ring Opening with Nitrogen Nucleophiles 5.5.2.3 Aziridine Ring Opening with Sulfur Nucleophiles References 5.6 Asymmetric alpha-Functionalization of Carbonyl Compounds and Alkylation of Enolates General Introduction 5.6.1 Asymmetric Alkylation 5.6.1.1 Asymmetric Benzylation of Glycine Derivatives for the Synthesis of Phenylalanine Derivatives 5.6.1.1.1 Asymmetric Alkylation of Glycine Derivatives for the Synthesis of 5.6.1.2 Asymmetric alpha-Alkylation of Ketones 5.6.1.3 Asymmetric Alkylation of beta-Keto Esters 5.6.1.4 Asymmetric Alkylation of Diaryloxazolidine-2,4-diones 5.6.1.5 Asymmetric alpa-Alkylation of Aldehydes with Alcohols 5.6.2 Asymmetric Alkenylation and Alkynylation 5.6.2.1 Asymmetric Alkenylation of β-Keto Esters 5.6.2.1.1 Asymmetric Alkynylation of β-Keto Esters 5.6.3 Asymmetric Oxidation 5.6.3.1 Asymmetric α-Hydroxylation of Ketones 5.6.3.2 Asymmetric α-Oxyamination of Aldehydes 5.6.4 Asymmetric Amination 5.6.4.1 Asymmetric Amination of β-Keto Esters 5.6.5 Asymmetric Fluorination 5.6.5.1 Asymmetric Fluorination of β-Keto Esters References 5.7 Oxidation of Alcohols, Allylic and Benzylic Oxidation, Oxidation of Sulfides General Introduction 5.7.1 Water-Soluble Ligands 5.7.2 Biomimetic Metalloporphyrins and Metallophthalocyanines 5.7.3 Enzymatic Oxidations: Oxidoreductases 5.7.4 Alcohol Oxidations in Aqueous Media 5.7.4.1 Tungsten(VI) Catalysts 5.7.4.2 Palladium–Diamine Complexes as Catalysts 5.7.4.3 Noble Metal Nanoparticles as Quasi-homogeneous Catalysts 5.7.4.4 Ruthenium and Manganese Catalysts 5.7.4.5 Organocatalysts: Hypervalent Iodine Compounds and Stable N-Oxyl Radicals 5.7.4.6 Enzymatic Oxidation of Alcohols 5.7.5 Benzylic and Allylic Oxidations inWater 5.7.5.1 Benzylic Oxidations 5.7.5.2 xidations 5.7.6 Sulfoxidations inWater 5.7.6.1 Tungstenand Vanadium-Catalyzed Oxidations with Hydrogen Peroxide 5.7.6.2 Enantioselective Sulfoxidation with Enzymes 5.7.6.3 Flavins as Organocatalysts for Sulfoxidation 5.7.7 Concluding Remarks References 5.8 Free-Radical Reactions General Introduction 5.8.1 Reductive Processes 5.8.1.1 Reductions with Metal Hydrides 5.8.1.2 Reduction with Phosphinic Acid and Its Derivatives 5.8.1.3 Reductions with Trialkylboranes 5.8.1.3.1 With Trialkylborane–Water Complexes 5.8.1.3.2 Triethylborane-Mediated Radical Addition to a C=N Bond 5.8.1.4 Reduction with Inorganic Reducing Agents 5.8.2 Atom Transfer Processes 5.8.3 Fragmentation Processes References 5.9 Polymerization General Introduction 5.9.1 Living Radical Polymerization 5.9.1.1 Nitroxide-Mediated Polymerization 5.9.1.2 Metal-Catalyzed Living Radical Polymerization or Atom-Transfer Radical Polymerization 5.9.1.3 Reversible Addition–Fragmentation Chain-Transfer Polymerization 5.9.2 Living Radical Suspension Polymerization 5.9.2.1 Iron-Catalyzed Living Radical Polymerization 5.9.2.2 Copper-Catalyzed Living Radical Polymerization 5.9.3 Living Radical Mini-emulsion Polymerization 5.9.3.1 Mini-emulsion with Reverse Atom-Transfer Radical Polymerization 5.9.3.2 Mini-emulsion with AGET Atom-Transfer Radical Polymerization 5.9.3.3 Mini-emulsion with Nitroxide-Mediated Polymerization 5.9.4 Living Radical Emulsion Polymerization 5.9.4.1 Emulsion with Nitroxide-Mediated Polymerization 5.9.4.2 Emulsion with Reversible Addition–Fragmentation Chain-Transfer Polymerization 5.9.5 Homogeneous Aqueous Living Radical Polymerization 5.9.5.1 Homogeneous Aqueous Atom-Transfer Radical Polymerization 5.9.5.2 Homogeneous Aqueous Reversible Addition–Fragmentation Chain-Transfer Polymerization References 6. Special Techniques with Water 6.1 Organic Synthesis “On Water” General Introduction 6.1.1 On-Water Reactions 6.1.1.1 Diels–Alder Reactions 6.1.1.2 Dipolar Cycloadditions 6.1.1.3 Cycloadditions of Azodicarboxylates 6.1.1.4 Claisen Rearrangement Passerini and Ugi Reactions 6.1.1.6 Nucleophilic Opening of Three-Membered Rings 6.1.1.7 Nucleophilic Substitution Reactions 6.1.1.8 Transformations Catalyzed by Transition Metals 6.1.1.9 Metal-Free Carbon—Carbon Bond-Forming Processes 6.1.1.10 Bromination Reactions 6.1.1.11 Oxidations and Reductions 6.1.2 Theoretical Studies 6.1.3 Concluding Remarks References 6.2 Suband SupercriticalWater General Introduction 6.2.1 Properties of Water 6.2.1.1 Macroscopic Properties 6.2.1.2 Microscopic Properties 6.2.1.3 Special Aspects of Heterogeneous Catalysis 6.2.2 Synthesis Reactions 6.2.2.1 Hydrolysis/Water Addition Reactions 6.2.2.2 Condensation/Water Elimination Reactions 6.2.2.3 Addition Reactions 6.2.2.3.1 Hydroformylation 6.2.2.3.2 Diels–Alder Reaction 6.2.2.3.3 Other Addition and Coupling Reactions 6.2.2.4 Rearrangements 6.2.2.5 Oxidations 6.2.2.6 Reductions 6.2.2.6.1 Using Formic Acid/Formates 6.2.2.6.2 Using Hydrogen and a Noble Metal Catalyst 6.2.2.6.3 Using Zinc 6.2.3 Summary 6.2.4 Outlook 6.2.5 Conclusion References 6.3 β-Cyclodextrin Chemistry in Water General Introduction 6.3.1 Cyclodextrins as Mass-Transfer Additives or Organocatalysts for Organic Synthesis inWater 6.3.1.1 Glycoside Hydrolysis Using Modified α- and β-Cyclodextrin Dicyanohydrins in Water 6.3.1.2 Oxidation of Benzylic Alcohols 6.3.1.3 Deprotection of Aromatic Acetals under Neutral Conditions Using β-Cyclodextrin in Water 6.3.1.4 Cyclodextrin-Promoted Synthesis of 3,4,5-Trisubstituted Furan-2(5H)-ones 6.3.1.5 β-Cyclodextrin-Catalyzed Strecker Synthesis of α-Aminonitriles in Water 6.3.1.6 Synthesis of 3-Hydroxy-3-(1H-indol-3-yl)-1,3-dihydro-2H-indol-2-ones under Neutral Conditions in Water 6.3.1.7 Synthesis of Pyrrole-Substituted 1,3-Dihydro-2H-indol-2-ones 6.3.1.8 Friedel–Crafts Alkylation of Indoles 6.3.1.9 Supramolecular Synthesis of Selenazoles Using Selenourea inWater 6.3.1.10 Cyclodextrin-Promoted Nucleophilic Opening of Oxiranes 6.3.1.11 Cyclodextrin-Promoted Michael Reactions of Thiols to Conjugated Alkenes 6.3.1.12 Cyclodextrin-Promoted Mild Oxidation of Alcohols with 1-Hydroxy-1,2-benziodoxol-3(1H)-one 1-Oxide 6.3.1.13 Synthesis of Thiiranes from Oxiranes in the Presence of β-Cyclodextrin in Water 6.3.2 Cyclodextrins as Organocatalyst Solubilizers 6.3.2.1 For Organocatalysts with an Adamantyl Subunit 6.3.2.2 For Organocatalysts with a 4-tert-Butylphenyl Subunit 6.3.3 Cyclodextrins as Mass-Transfer Additives in Aqueous Organometallic Catalysis 6.3.4 Cyclodextrins as Ligands for Metal-Catalyzed Reactions 6.3.5 Cyclodextrins as Stabilizers ofWater-Soluble Noble Metal Nanoparticles 6.3.6 Cyclodextrins as Dispersing Agents of Catalytically Active Solids 6.3.6.1 Cyclodextrins as Dispersing Agents of Supported Metals 6.3.6.2 Cyclodextrins as Dispersing Agents of Metallic Powder References 7. Industrial Application 7.1 Hydroformylation General Introduction 7.1.2 Immobilized Oxo Catalysts 7.1.3 Biphasic Catalyst System 7.1.4 Ruhrchemie/Rhфne-Poulenc Process 7.1.4.1 Reaction 7.1.4.2 Recycle and Recovery of the Aqueous Catalyst 7.1.4.2.1 Recycle 7.1.4.2.2 Recovery 7.1.4.3 Economics of the Process 7.1.4.4 Environmental Aspects 7.1.5 Conclusions References 7.2 Industrial Applications Other than Hydroformylation General Introduction 7.2.1 Classical Reactions 7.2.1.1 Hydrolysis 7.2.1.2 Hydration 7.2.1.3 Homogeneous Mixed-Solvent Systems 7.2.1.4 Heterogeneous Mixed-Solvent Systems 7.2.2 Metal-Catalyzed Reactions 7.2.2.1 Palladium-Catalyzed Coupling Reactions 7.2.2.2 Palladium-Catalyzed Telomerization of Butadiene 7.2.2.3 Lewis Acid Catalysis 7.2.3 Enzymatic Reactions 7.2.3.1 Synthesis of Tamiflu 7.2.3.2 Synthesis of Statins (Lipitor and Crestor) 7.2.3.3 Synthesis of LY300164 7.2.3.4 Synthesis of Pregabalin 7.2.3.5 Synthesis of 6-Aminopenicillanic Acid 7.2.3.6 Synthesis of Rhinovirus Protease Inhibitor Intermediates 7.2.3.7 Synthesis of a GABA Inhibitor 7.2.3.8 Synthesis of an HIV Protease Inhibitor 7.2.3.9 Synthesis of Pelitrexol 7.2.4 Other Reactions 7.2.5 Conclusions and Perspectives References 8. Perspective: The NewWorld of Organic Chemistry UsingWater as Solvent 8.1 Palladium-Catalyzed Allylic Amination Using Aqueous Ammonia 8.2 Aldehyde Allylation with Allylboronates in Aqueous Media 8.3 Catalytic Use of Indium(0) for C—C Bond Transformations inWater 8.4 Conclusions and Outlook References keyword-index-2012