دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Pasquale Cavaliere
سری:
ISBN (شابک) : 9783031377792, 9783031377808
ناشر: Springer
سال نشر: 2023
تعداد صفحات: 852
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 19 مگابایت
در صورت تبدیل فایل کتاب Water Electrolysis for Hydrogen Production به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب الکترولیز آب برای تولید هیدروژن نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب شرح مفصلی از تولید هیدروژن از طریق الکترولیز آب ارائه می دهد. با توصیف نظری مسائل شیمیایی، ترمودینامیکی و جنبشی مربوط به الکترولیز آب شروع می شود. فناوری های اصلی موجود و در حال توسعه از نظر فنی و علمی به تفصیل بیان شده اند. در پایان کتاب دکتر کاوالیر کاربردهای اصلی هیدروژن و سهم آنها را در انتقال انرژی بزرگی که تا اواسط قرن انتظار می رود، توضیح می دهد. این کتاب همچنین به بررسی مسائل اقتصادی مربوط به گذار به سوی جامعه هیدروژنی می پردازد.
This book provides a detailed description of hydrogen production through water electrolysis. It starts with the theoretical description of the chemical, thermodynamic, and kinetic issues related to the electrolysis of water. The main available technologies and the ones under development are detailed from a technical and a scientific point of view. At the end of the book Dr. Cavaliere describes the main hydrogen applications and their contribution to the grand energy transition that is expected by the middle of the century. The book also examines the economic issues related to the transition toward the hydrogen society.
Preface Contents Abbreviations Fundamentals of Water Electrolysis 1 Introduction 2 Hydrogen Production Through Electrolysis 2.1 Water Electrolysis History 2.2 Water Electrolysis Principles 2.3 Electrode Potentials 2.4 Hydrogen and Oxygen Evolution 3 Theoretical Fundamentals 3.1 Basics of Catalyst Reactions 3.2 The Electrochemical Interface and the Electric Double Layer 3.3 Catalytic Active Sites 3.4 Electrocatalytic Reactions in Energy Conversion and Storage 3.5 Nernst Equation 3.6 Butler-Volmer Equation 3.7 Tafel Equation, Overpotential and Limiting Current Density 3.8 Hydrogen Evolution Reaction 3.9 Oxygen Evolution Reaction 4 Catalytic Activity 4.1 Activity Definition 4.2 Microkinetic Model 4.3 Nanomaterials 5 Pulsed Water Electrolysis 5.1 Inductive Pulses 5.2 Voltage Pulses 5.3 Current Pulses 6 Conclusions References Hydrogen and Energy Transition 1 Introduction 2 The Energy Carrier of the Future 3 Physical and Chemical Properties 3.1 Metal Hydrides 3.2 Liquid Organic Hydrogen Carriers 4 Chemical Properties 5 Hydrogen Production 5.1 Steam Reforming 5.2 Hydrogen from Coal 5.3 Hydrogen from Biomass 5.4 Hydrogen Through Nuclear 5.5 Biological and Photonic Methods 6 Conclusions References Thermochemical Water Splitting Cycles 1 Introduction 2 Principles of Water Splitting 3 Low Temperature Electrolysis 4 Thermodynamic at High Pressure 5 Thermodynamic of Catalytic Activity 6 Membranes for Water Splitting 7 Conclusions References Water Purification and Desalinization 1 Introduction 2 Water Purification 2.1 Electrolysis of Sea Water 2.2 Wastewater Treatment 2.3 Electrochemical Wastewater Treatment 2.4 Electrochemical Treatment of Persistent Wastewater 2.5 Efficiency and Energy Parameters in Electrochemical Oxidation 2.6 Kinetics and Mechanism of Organic Oxidation 2.7 Pulsed Electrochemical Wastewater Oxidation 3 Direct Sea Water Electrolysis 4 Conclusions References Alkaline Liquid Electrolyte Water Electrolysis 1 Introduction 2 Alkaline Water Electrolysis 3 Catalytic Reactions 3.1 HER Catalysts 3.2 OER Catalysts 3.3 Cell Components 4 Ni-Based Alloys Catalytic Performances 5 Influence of Process Conditions on Gas Purity in Alkaline Water Electrolysis 6 Conclusions References Proton Exchange Membrane Water Electrolysis 1 Introduction 2 Proton Exchange Membrane Water Electrolysis 2.1 Hydrogen Evolution Reaction 2.2 Oxygen Evolution Reaction 2.3 Cell Components 3 Gas Crossover 4 Voltage Losses 5 Operating Conditions 6 Degradation Phenomena 7 Catalysts Activity 7.1 Transition Metal Dichalcogenides (TMD´s) 7.2 Metal Organic Framework Derivatives 7.3 Transition Metal Phosphides (TMP´s) 8 OER Catalysts Activity 8.1 Unary Metal Oxides 8.2 Mixed Metal Oxides 8.3 Beyond Metal Oxides 8.4 Anodic Conductive Supports 9 Conclusions References Anion Exchange Membrane Water Electrolysis 1 Introduction 2 Anion Exchange Membrane Water Electrolysis 2.1 Thermodynamic of Water Splitting 3 Cell Components 3.1 Electrodes 3.2 Anion Exchange Membrane 4 Conclusions References Solid Oxide Water Electrolysis 1 Introduction 2 Solid Oxide Electrolysis 3 Cell Components 3.1 Hydrogen Electrode 3.2 Oxygen Electrode 3.3 Solid Oxide Electrolyte 4 High Temperature Steam Electrolysis 4.1 Cell Physical Model 5 Materials for Solid Oxide Electrolysis 5.1 State of the Art Materials 5.2 Innovative Materials 6 Conclusions References Photoelectrochemical Water Electrolysis 1 Introduction 2 Photoelectrochemical Water Electrolysis 3 PEC Water Splitting 3.1 Photoelectrodes Performances 4 Cell Design 4.1 Photoelectrodes Materials 5 Solar Energy to Hydrogen 6 Conclusions References Decoupled Water Splitting 1 Introduction 2 Decoupled Electrochemical Water Splitting Fundamentals 3 Decoupled Water Splitting Cells 4 E-TAC 5 Conclusions References Electrocatalysts for Water Splitting 1 Introduction 2 Design Principles 3 HER Electrocatalysts 4 Metals and Alloys 5 Transition Metals Oxides and Hydroxides 6 Transition Metals Chalcogenides 7 Transition Metals Phosphides 8 TMPs Based Composites 9 Other Compounds 10 OER Catalysts 10.1 Carbon Free Materials 10.2 Carbon-Based Materials 11 Noble Metals Electrocatalysts 12 Conclusions References Thermodynamic and Kinetic Analysis of Hydrogen Production Processes 1 Introduction 2 Role of Catalysts 3 Materials for OER 3.1 Kinetics of OER 3.2 NiFe-Based Catalysts for OER 3.3 3d Dual Transition Metal Catalysts for OER 3.4 Perovskite Oxide Electrocatalysts for OER 4 Materials for HER 4.1 Precious Metals Catalysts for HER 4.2 PGM-Free Metals and their Alloys Catalysts for HER 4.3 Other PGM-Free Material Groups for HER 4.4 Zero-Dimensional Catalytic Materials for HER 4.5 One-Dimensional Catalytic Materials for HER 4.6 Two-Dimensional Catalytic Materials for HER 5 Conclusions References Nuclear Hydrogen Production 1 Introduction 2 High Temperature Co-electrolysis of Steam and Carbon Dioxide 3 Nuclear Reactor for Hydrogen Production 4 Hydrogen from Nuclear Energy 4.1 High-Temperature Elecrolysis of Steam 4.2 Ultra High-Temperature Reactors 5 Conclusions References Hydrogen Separation and Purification 1 Introduction 2 Hydrogen Separation and Purification 3 Conclusions References Hydrogen Infrastructure 1 Introduction 2 Liquefaction of Hydrogen 3 Storage of Hydrogen 4 Transportation/Distribution of Hydrogen 5 Hydrogen Infrastructure Overview 6 Conclusions References Hydrogen Storage 1 Introduction 2 Compressed Gas Hydrogen Storage 2.1 Cryogenic Hydrogen Storage Systems 2.2 On Board Reversible Hydrogen Storage Materials and Systems 3 Hydrogen Storage in Pressure Vessels: Liquid, Cryogenic, and Compressed Gas 4 Hydrogen Storage in Interstitial Metal Hydrades 5 Engineering Properties of Hydrogen Storage Materials 6 Conclusions References Hydrogen Transportation 1 Introduction 2 Hydrogen Embrittlement 2.1 Hydrogen Embrittlement Mechanisms 2.2 Hydrogen Diffusion and Trapping Models 3 Transmission Through Pipelines 4 Hydrogen Compression 5 Refueling Issues 6 Conclusions References Hydrogen Applications 1 Introduction 2 Current Uses of Hydrogen 3 Uses of Hydrogen as Raw Material 4 Prospective Uses of Hydrogen 5 Hydrogen Vehicles 6 Stationary Applications 7 Potential Industrial Uses of Hydrogen 7.1 Hydrogen in Oil Refining 7.2 Chemical Sector 7.3 Iron and Steel Sector 7.4 High Temperature Heating 8 Potential Uses of Hydrogen in Transport 8.1 Hydrogen as a Clean Transport Fuel 8.2 Hydrogen in Maritime Sector 8.3 Hydrogen in Rail 8.4 Hydrogen in Aviation 9 Hydrogen for Power Generation and Electricity Storage 10 Conclusions References Safety Issues and Regulations 1 Introduction 1.1 Drivers for Hydrogen Penetration 2 Barriers to the Penetration 3 Safety Issues 3.1 Material Properties-Related Safety Aspects 3.2 Hydrogen Handling-Related Safety Aspects 4 Hydrogen Risk Assessment 5 Safety Issues for Hydrogen Storage 6 Engineering Issues Related to Condensed Phase Storage 7 Hydrogen Engineering Safety 8 Conclusions References Electrolysis Economy 1 Introduction 2 Stack Design 2.1 PEM Electrolyzers 2.2 AEM Electrolyzers 2.3 Solid Oxide Electrolyzers 3 Materials 4 Modules Size 5 System Level 5.1 Manufacturing Scale 6 Electricity 7 Transmission Costs 8 Costs of Delivering and Storing Hydrogen 9 Conclusions References Index