دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [27, 1 ed.] نویسندگان: Lawrence K. Wang, Mu-Hao Sung Wang, Yung-Tse Hung, (eds.) سری: Handbook of Environmental Engineering ISBN (شابک) : 9783031447686, 9783031447679 ناشر: Springer Nature Switzerland سال نشر: 2023 تعداد صفحات: xv, 433 زبان: English فرمت فایل : EPUB (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 27 Mb
در صورت تبدیل فایل کتاب Waste Treatment in the Biotechnology, Agricultural and Food Industries : Volume 2 به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب درمان پسماند در بیوتکنولوژی، کشاورزی و صنایع غذایی: جلد 2 نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب و کتاب خواهر آن (جلد 1) از سری هندبوک مهندسی محیط زیست (HEE) برای خدمت به عنوان یک مینی سری پوشش دهنده تصفیه زباله در بیوتکنولوژی، کشاورزی و صنایع غذایی طراحی شده اند. انتظار می رود که برای دانشجویان پیشرفته کارشناسی و کارشناسی ارشد، برای طراحان سیستم های منابع بیولوژیکی پایدار و برای دانشمندان و محققان ارزشمند باشد. هدف این کتاب ها ارائه اطلاعاتی در مورد مهندسی زیست محیطی و به عنوان مبنایی برای مطالعه پیشرفته یا بررسی تخصصی تئوری و تجزیه و تحلیل سیستم های مختلف کشاورزی و منابع طبیعی است. جلد 2 موضوعات زیر را پوشش می دهد: (الف) استفاده از فلوتاسیون-فیلتراسیون ثانویه و بازیافت منعقد کننده برای بهبود تأسیسات تصفیه اولیه زباله آسیاب خمیر کاغذ. ب) مدیریت پسماندهای جامد و خطرناک؛ (ج) آنزیم های میکروبی برای تصفیه فاضلاب. (د) یک رویکرد چند معیاره برای انتخاب فناوری تصفیه مناسب برای احیای آب. (ه) مواد شیمیایی مورد استفاده در کشاورزی: خطرات و مسایل مربوط به سمیت. (و) بیوچار برای حذف جذبی مواد دارویی از آب محیطی. (ز) تصفیه پساب کارخانه روغن نخل. (ح) تصفیه و مدیریت زباله های جامد با سوزاندن. (i) فن آوری برای حذف ترکیبات آلی فرار (VOC) از پساب های صنعتی و/یا منابع آب آشامیدنی. (ی) درمان پسماندهای بهداشتی.
This book and its sister book (Volume 1 ) of the Handbook of Environmental Engineering (HEE) series have been designed to serve as a mini-series covering waste treatment in biotechnology, agricultural and food industries . It is expected to be of value to advanced undergraduate and graduate students, to designers of sustainable biological resources systems, and to scientists and researchers. The aim of these books is to provide information on bio-environmental engineering, and to serve as a basis for advanced study or specialized investigation of the theory and analysis of various agricultural and natural resources systems. Volume 2 covers topics on: (a) application of secondary flotation-filtration and coagulant recycle for improvement of a pulp mill primary waste treatment facility; (b) management of solid and hazardous wastes; (c) microbial enzymes for wastewater treatment; (d) a multi-criteria approach to appropriate treatment technology selection for water reclamation; (e) chemicals used in agriculture: hazards and associated toxicity issues; (f) biochar for adsorptive removal of pharmaceuticals from environmental water; (g) treatment of palm oil mill effluent; (h) treatment and management of solid waste by incineration; (i) technologies for removal of volatile organic compounds (VOC) from industrial effluents and/or potable water sources; (j) treatment of healthcare waste.
Preface Contents Contributors About the Editors Chapter 1: Application of Secondary Flotation-Filtration and Coagulant Recycle for Improvement of a Pulp Mill Primary Waste Treatment Facility 1.1 Introduction 1.1.1 General Introduction 1.1.2 Pulp Mill and Existing Wastewater Treatment Facilities 1.2 Improved Wastewater Treatment System 1.2.1 Two-Stage Wastewater Treatment System 1.2.2 Alternative One 1.2.3 Alternative Two 1.3 Total Sludge Recycle System 1.3.1 General Concepts 1.3.2 Two-Stage Sludge Recycle System 1.3.2.1 First-Stage WWT-Settled Sludge Recycle 1.3.2.2 Second-Stage WWT-Floated Sludge Recycle 1.3.3 Sludge Recovery Experiments Using Actual Pulp Mill Sludge 1.3.3.1 First Stage WWT-Settled Sludge Recovery with Caustic Soda 1.3.3.2 Second-Stage WWT-Floated Sludge Recovery with Caustic Soda 1.3.3.3 Second-Stage WWT-Floated Sludge Recovery with Sulfuric Acid 1.3.4 Supplemental Experiments Using Lenox Sludge 1.3.5 Summary 1.3.6 Economics Glossary [17–21] References Chapter 2: Management of Various Sources of Hazardous Waste 2.1 Definition of Hazardous Waste 2.1.1 Generation of Hazardous Waste 2.1.2 Sources of Hazardous Waste 2.1.3 Illegal Hazardous Waste Disposal 2.2 Identification and Classification of Hazardous Waste 2.2.1 Identification Based on Environmental Protection Agency (EPA) 2.2.1.1 Determination of “Solid Waste” 2.2.1.2 Waste Excluded from Solid Waste or Hazardous Waste Regulation 2.2.1.3 Hazardous Waste List 2.2.1.4 Characteristics of Hazardous Waste 2.2.2 Identification Based on the Environmental Quality Act (EQA) 2.3 Waste Management Hierarchy 2.3.1 Prevention and Reduction 2.3.2 Reuse and Recycling 2.3.3 Treatment and Recovery 2.3.4 Disposal 2.4 Waste Management in Other Countries 2.4.1 Hazardous Waste Management in Malaysia 2.4.2 Industrial Waste Management in Singapore 2.4.3 Hazardous Waste Management in China 2.4.4 Hazardous Waste Management in Japan 2.4.5 Hazardous Waste Management in Romania 2.5 Conclusions Glossary References Chapter 3: Microbial Enzymes for Wastewater Treatment 3.1 Wastewater Treatment 3.1.1 Types of Wastewater Pollutants 3.1.1.1 Domestic Pollutants 3.1.1.2 Industrial Pollutants 3.1.1.2.1 Heavy Metals 3.1.1.2.2 Oil and Plastics 3.1.1.2.3 Dyes 3.1.1.2.4 Micropollutants 3.1.1.2.5 Pharmaceutical Industries 3.1.1.2.6 Textile Industries 3.1.1.2.7 Paper and Pulp Industries 3.1.1.2.8 Food Industries 3.1.1.3 Agricultural Pollutants 3.1.1.4 Stormwater 3.2 Treatment of Wastewater and Applied Methods 3.2.1 Physical Methods 3.2.2 Chemical Methods 3.2.3 Biological Methods 3.3 Microbial Enzymes 3.3.1 Laccases 3.3.2 Peroxidases 3.3.2.1 Horseradish Peroxidases 3.3.2.2 Manganese Peroxidases 3.3.2.3 Lignin Peroxidases 3.3.2.4 Versatile Peroxidases 3.3.2.5 Chloroperoxidases 3.3.3 Lipases 3.3.4 Cutinases 3.3.5 Cellulases 3.3.6 Proteases 3.3.7 Poly(ethylene Terephthalate) Hydrolases 3.3.8 MHETases 3.3.9 Amylases 3.4 Wastewater-Treatment Methods, Including Enzymes 3.4.1 Free Enzyme Systems 3.4.2 Immobilized Enzyme Systems 3.4.3 Systems Connected to Enzyme Mediators 3.5 Enzyme Selection 3.6 Importance of Enzymes in Wastewater Treatment 3.7 Challenges in Wastewater Treatment 3.8 Future Work 3.9 Conclusion Glossary References Chapter 4: A Multi-criteria Approach to Appropriate Treatment Technology Selection for Water Reclamation 4.1 Introduction 4.2 Sewage Treatment Technologies 4.2.1 Activated Sludge Process (ASP) 4.2.1.1 Advantages 4.2.1.2 Disadvantages 4.2.2 Sequencing Batch Reactor (SBR) 4.2.2.1 Advantages 4.2.2.2 Disadvantages 4.2.3 Anaerobic–Anoxic–Oxic (A2O) Process 4.2.3.1 Advantages 4.2.3.2 Disadvantages 4.2.4 Cyclic Activated Sludge Technology (C. Tech) 4.2.4.1 Advantages 4.2.4.2 Disadvantages 4.2.5 Biological Filtration and Oxygenated Reactor (BIOFOR) 4.2.5.1 Advantages 4.2.5.2 Disadvantages 4.2.6 High-Rate Activated Sludge BIOFOR-F Technology 4.2.6.1 Advantages 4.2.6.2 Disadvantages 4.2.7 Soil Biotechnology (SBT) 4.2.7.1 Advantages 4.2.7.2 Disadvantages 4.2.8 Constructed Wetlands (CW) 4.2.8.1 Advantages 4.2.8.2 Disadvantages 4.2.9 Waste Stabilization Pond (WSP) 4.2.9.1 Advantages 4.2.9.2 Disadvantages 4.2.10 Duckweed Pond System (DPS) 4.2.10.1 Advantages 4.2.10.2 Disadvantages 4.2.11 Moving Bed Biofilm Reactor (MBBR) 4.2.11.1 Advantages 4.2.11.2 Disadvantages 4.2.12 Membrane Bioreactor (MBR) 4.2.12.1 Advantages 4.2.12.2 Disadvantages 4.2.13 Trickling Filter 4.2.13.1 Advantages 4.2.13.2 Disadvantages 4.2.14 Submerged Aerated Fixed Film (SAFF) 4.2.14.1 Advantages 4.2.14.2 Disadvantages 4.2.15 Up-Flow Anaerobic Sludge Blanket Reactor (UASB) + Extended Aeration (EA) 4.2.15.1 Advantages 4.2.15.2 Disadvantages 4.2.16 Oxidation Ditch 4.2.16.1 Advantages 4.2.16.2 Disadvantages 4.2.17 Anaerobic Lagoon Followed by Stabilization Pond (SP) 4.2.17.1 Advantages 4.2.17.2 Disadvantages 4.2.18 Modified Ludzack-Ettinger Process (MLE) 4.2.18.1 Advantages 4.2.18.2 Disadvantages 4.2.19 Bardenpho Process 4.2.19.1 Advantages 4.2.19.2 Disadvantages 4.2.20 Step-Feed BNR Process 4.2.20.1 Advantages 4.2.20.2 Disadvantages 4.2.21 Wuhrmann Process 4.2.21.1 Advantages 4.2.21.2 Disadvantages 4.2.22 Coagulation + Flocculation + Rapid Sand Filters 4.2.22.1 Advantages 4.2.22.2 Disadvantages 4.2.23 Microfiltration/Ultrafiltration and Reverse Osmosis (MF/UF + RO) 4.2.23.1 Advantages 4.2.23.2 Disadvantages 4.3 Reuse Purpose and Quality Criteria 4.4 Effluent Quality Prediction 4.5 FUll COnsistency Method (FUCOM) 4.6 Weighted Sum Method (WSM) 4.7 Selection of Appropriate WWTT Combinations 4.8 Case Study: Kanpur City 4.8.1 Estimation of Potential Reclaimed Water Demand in Kanpur City 4.8.2 Decision Criteria Weightage Calculation Using FUCOM 4.8.3 Selection of Appropriate WWTTs for Kanpur City 4.9 Case Study: Varanasi City 4.9.1 Estimation of Potential Reclaimed Water Demand in Kanpur City 4.9.2 Decision Criteria Weightage Calculation Using FUCOM 4.9.3 Selection of Appropriate WWTTs for Varanasi City 4.10 Sensitivity Analysis 4.11 Conclusion Glossary References Chapter 5: Chemicals Used in Agriculture: Hazards and Associated Toxicity Issues 5.1 Introduction 5.2 Risk and Hazardous of Agrichemicals 5.3 Various Classes of Chemicals Used in Agriculture 5.3.1 Herbicides 5.3.1.1 On the Basis of Chemical Composition 5.3.1.2 On the Basis of the Mechanism 5.3.2 Pesticides 5.3.2.1 On the Basis of Chemical Composition 5.3.2.2 On the Basis of Targeting Agents 5.4 Various Toxicity Issues Associated with Agrichemicals 5.4.1 Acute Toxicity 5.4.2 Chronic Toxicity 5.4.3 Toxicity Related to Carcinogenesis 5.4.4 Embryonic Toxicity 5.4.5 Mutagenesis 5.4.6 Organ Toxicity 5.4.7 Reproductive Toxicity 5.4.8 Teratogenic Effects 5.5 Conclusions Glossary References Chapter 6: Biochar for Adsorptive Removal of Pharmaceuticals from Environmental Water 6.1 Introduction 6.2 Biochar Production and Properties 6.2.1 Biochar Feedstock 6.2.2 Biochar Production Methods 6.2.3 Biochar Properties 6.2.3.1 Physical Properties 6.2.3.2 Chemical Properties 6.2.4 Factors Affecting Biochar Properties 6.3 Pharmaceutical Adsorption onto Biochar 6.3.1 Removal of Sodium Diclofenac 6.3.2 Removal of Ibuprofen 6.3.3 Removal of Nonsteroidal Anti-inflammatory Pharmaceutical 6.3.4 Removal of Sulfamethoxazole 6.3.5 Removal of Tetracycline 6.4 Regeneration Performance 6.5 Adsorption Mechanism 6.6 Conclusions Glossary References Chapter 7: Treatment of Palm Oil Mill Effluent 7.1 Introduction 7.2 Oil Palm and Palm Oil Production 7.3 Crude Palm Oil (CPO) Production Process and Waste 7.3.1 CPO Production Process 7.3.2 FFB Reception and Transfer 7.3.3 FFB Sterilization 7.3.4 Threshing, Digesting, and Screw-Pressing 7.3.5 Depericarping 7.3.6 Clarification of CPO 7.3.7 Kernel Separation and Drying 7.3.8 Waste 7.4 Palm Oil Mill Effluent (POME) 7.4.1 Introduction 7.4.2 Characteristics of POME 7.5 Conventional POME Treatment Technologies 7.5.1 Ponding System 7.5.1.1 Facultative Pond 7.5.1.2 Anaerobic Ponding System 7.5.1.3 Open and Closed Digester Tank 7.5.2 Phytoremediation 7.5.3 Bioremediation 7.6 Advanced POME Treatment Technologies 7.6.1 Advanced Oxidation Process 7.6.2 Coagulation Flocculation 7.6.3 Microwave Irradiation (MI) 7.6.4 Biological Treatment of POME 7.6.5 Membrane Filtration Technology 7.6.6 Ultrasonication 7.6.7 Adsorption 7.7 The Advantages and Disadvantages of Treatment Methods of POME 7.8 Current Trends and Future Perspectives 7.9 Conclusions Glossary References Chapter 8: Treatment and Management of Hazardous Solid Waste Stream by Incineration 8.1 Introduction 8.2 Hazardous Waste 8.2.1 Hazardous Waste Stream 8.2.2 Hazardous Waste Composition 8.2.3 Hazardous Waste Characterization 8.3 Waste-Incineration Directive 8.4 Incineration Systems 8.4.1 Waste Delivery, Bunker, and Feeding System 8.4.2 Mass Burn Incineration 8.4.3 Furnace 8.4.4 Heat Recovery 8.4.5 Emissions Control 8.4.5.1 Dust or Particulate Matter 8.4.5.2 Heavy Metals 8.4.5.3 Acidic and Corrosive Gases 8.4.5.4 Products of Incomplete Combustion: Polycyclic Aromatic Hydrocarbons, Dioxins, and Furans 8.4.6 Energy Recovery via District Heating, Electricity Generation, and Combined Heat and Power 8.4.7 Other Types of Incineration 8.4.7.1 Fluidized Bed Incinerators 8.4.7.2 Starved Air Incinerators 8.4.7.3 Rotary Kiln Incinerators 8.4.7.4 Liquid and Gaseous Waste Incinerators 8.5 Incineration Fly Ash 8.5.1 Treatment of Incineration Fly Ash 8.5.2 Application of Incineration Fly Ash 8.6 Co-incineration 8.6.1 Co-incineration in Cement Kiln 8.6.2 Co-incineration of Municipal Solid Waste and Sewage Sludge 8.6.3 Co-incineration of Other Wastes 8.7 Case Study of Waste Incineration 8.7.1 China 8.7.2 South Korea 8.7.3 Europe 8.7.4 Malaysia 8.7.5 India 8.7.6 Iran 8.7.7 Other Countries 8.8 Challenges and Future Perspectives 8.9 Conclusion Glossary References Chapter 9: Technologies for Removal of Hazardous Volatile Organic Compounds from Industrial Effluents and/or Potable Water Sources 9.1 Introduction 9.2 Sources of VOCs 9.2.1 VOCs in the Indoor Environment 9.2.2 VOCs in the Outdoor Environment 9.2.2.1 Traffic and the Area with a Lot of Cars 9.2.2.2 Factories and Other Industrial Buildings 9.2.2.3 Recycling 9.2.3 VOCs in Nature 9.2.3.1 Cattle Farms 9.2.3.2 Plants 9.2.3.3 Burning 9.3 Common VOC Removal Technologies 9.3.1 Thermal Oxidation 9.3.2 Catalytic Oxidation 9.3.3 Adsorption 9.3.4 Biotreatment of VOC 9.3.4.1 Biofiltration Mechanism 9.4 Conclusion Glossary References Chapter 10: Various Technologies in Healthcare Waste Management and Disposal 10.1 Introduction 10.2 Generation and Types of Healthcare Waste 10.2.1 Healthcare Waste Generation 10.2.2 Types of Healthcare Waste 10.2.2.1 Infectious Waste 10.2.2.2 Chemical Waste 10.2.2.3 Sharp Waste 10.2.2.4 Pharmaceutical Waste 10.3 Risk of Healthcare Waste 10.3.1 Contamination of Healthcare Waste 10.3.2 Impact of Healthcare Waste 10.3.2.1 Health Risk 10.3.2.2 Environmental Risk 10.4 Treatment and Disposal of Healthcare Waste 10.4.1 Landfill 10.4.2 Incineration 10.4.3 Pyrolysis 10.4.4 Steam Sterilization 10.4.5 Microwave Sterilization 10.4.6 Chemical Disinfection Technology 10.4.7 Plasma Technology 10.4.8 Torrefaction 10.5 Co-disposal of Healthcare Waste 10.5.1 Co-disposal of Healthcare Waste and Municipal Solid Waste 10.5.2 Co-disposal of Healthcare Waste and Hazardous Waste 10.5.3 Co-disposal of Healthcare Waste in Cement Kiln 10.6 Case Study of Healthcare Waste in Different Countries 10.6.1 China 10.6.2 Southeast Asia 10.6.3 The United States 10.6.4 South Korea 10.6.5 Japan 10.6.6 The United Kingdom 10.7 Challenges and Future Prospects 10.8 Conclusion Glossary References List of Figures List of Tables Index