ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Waste to Renewable Biohydrogen, Volume 2: Numerical Modelling and Sustainability Assessment

دانلود کتاب زباله به بیوهیدروژن تجدیدپذیر، جلد 2: مدلسازی عددی و ارزیابی پایداری

Waste to Renewable Biohydrogen, Volume 2: Numerical Modelling and Sustainability Assessment

مشخصات کتاب

Waste to Renewable Biohydrogen, Volume 2: Numerical Modelling and Sustainability Assessment

ویرایش:  
نویسندگان: , , ,   
سری:  
ISBN (شابک) : 0128216751, 9780128216750 
ناشر: Academic Press 
سال نشر: 2022 
تعداد صفحات: 269
[272] 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 6 Mb 

قیمت کتاب (تومان) : 37,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 7


در صورت تبدیل فایل کتاب Waste to Renewable Biohydrogen, Volume 2: Numerical Modelling and Sustainability Assessment به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب زباله به بیوهیدروژن تجدیدپذیر، جلد 2: مدلسازی عددی و ارزیابی پایداری نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب زباله به بیوهیدروژن تجدیدپذیر، جلد 2: مدلسازی عددی و ارزیابی پایداری



ضایعات به بیوهیدروژن تجدیدپذیر، جلد دوم: مدل‌سازی عددی و ارزیابی پایداری یک رویکرد یکپارچه در جنبه‌های تجربی، مدل‌سازی و پایداری سیستم‌های زباله به بیوهیدروژن ارائه می‌دهد. این کتاب بر فرآیندهای تصفیه زباله تا تولید هیدروژن، بررسی روش‌های مدل‌سازی و شبیه‌سازی برای طراحی و بهینه‌سازی فرآیندها و سیستم‌های مختلف تمرکز دارد. علاوه بر این، به کاربرد دینامیک سیالات محاسباتی و شبکه های عصبی مصنوعی می پردازد. در نهایت، به پیامدهای اقتصادی، زیست‌محیطی و پایداری سیستم‌های پسماند به بیوهیدروژن می‌پردازد، تکنیک‌های متعددی را برای تجزیه و تحلیل هزینه-فایده، تحلیل فنی-اقتصادی، ارزیابی چرخه عمر، رتبه‌بندی پایداری و طراحی زنجیره تامین پوشش می‌دهد.

این مرجع جامع از تصمیم‌گیری برای محققان انرژی و متخصصان صنعت پشتیبانی می‌کند، اما برای دانشجویان فارغ‌التحصیل، محققان اولیه شغلی و متخصصان مدیریت زباله نیز ایده‌آل است.


توضیحاتی درمورد کتاب به خارجی

Waste to Renewable Biohydrogen, Volume Two: Numerical Modelling and Sustainability Assessment provides an integrated approach on the experimental, modeling and sustainability aspects of waste-to-biohydrogen systems. The book focuses on processes for waste treatment to hydrogen production, delving into modeling and simulation methodologies for the design and optimization of different processes and systems. In addition, it looks at the application of computational fluid dynamics and artificial neural networks. Finally, it addresses the economic, environmental and sustainability implications of waste-to-biohydrogen systems, covering several techniques for cost-benefit analysis, techno-economic analysis, lifecycle assessment, sustainability ranking and supply chain design.

This well-rounded reference supports decision-making for energy researchers and industry practitioners alike, but it is also ideal for graduate students, early career researchers and waste management professionals.



فهرست مطالب

Front Cover
Waste to Renewable Biohydrogen: Numerical Modelling and Sustainability Assessment
Waste to Renewable Biohydrogen: Numerical Modelling and Sustainability Assessment
Copyright
Contents
Contributors
1 - Modeling of biohydrogen production by dark fermentation
	1.1 Introduction
	1.2 Mathematical modeling of biohydrogen production by dark fermentation
		1.2.1 Gompertz model
		1.2.2 Luedeking–Piret model
		1.2.3 Monod model
		1.2.4 Han and Levenspiel model
		1.2.5 Anaerobic digestion model n.1
	1.3 Conclusion
	References
2 - Numerical simulation and application of photofermentative bio-hydrogen production system
	2.1 Introduction
	2.2 Numerical simulation of biomass PBHPS flow field
		2.2.1 Photofermentative polyphasic flow hydrogen production system
		2.2.2 Control equation
			2.2.2.1 Basic governing equation
			2.2.2.2 Modified control equation
			2.2.2.3 Calculation of viscosity
		2.2.3 Boundary and initial conditions
		2.2.4 Meshing and solution method
			2.2.4.1 Mesh generation
			2.2.4.2 Calculation method
		2.2.5 Calculation conditions and related assumptions
			2.2.5.1 Assumptions
			2.2.5.2 Calculation conditions
		2.2.6 Numerical simulation results and analysis of flow field
			2.2.6.1 Trace line of fluid particles
			2.2.6.2 Velocity distribution of the liquid phase
			2.2.6.3 Velocity distribution of solid phase
			2.2.6.4 Velocity distribution of mixture
			2.2.6.5 Comparison of calculated and measured values
		2.2.7 Conclusion
	2.3 Numerical simulation of temperature field of PBHPS
		2.3.1 Temperature field analysis method of photosynthetic biological hydrogen production system
			2.3.1.1 Biomass multiphase flow photosynthetic hydrogen production process
			2.3.1.2 Temperature monitoring of BMFPHPS
			2.3.1.3 Analytical method
		2.3.2 Analysis basis for temperature field of biomass multiphase flow photosynthetic hydrogen production System
			2.3.2.1 Mechanism of temperature field analysis of BMFPHPS
			2.3.2.2 Basic control equations of temperature field numerical simulation process
			2.3.2.3 Finite element method for temperature field of BMFPHPS
		2.3.3 Temperature field numerical simulation of the biomass multiphase flow PBHPS by Fluent
			2.3.3.1 Modeling of heat transfer processes of BMFPHPS
			2.3.3.2 Related model selection and assumptions in fluent
			2.3.3.3 Basic analysis process of heat conduction in the baffle photobiochemical reactor
		2.3.4 Regulation of temperature field distribution by parameter adjustment
			2.3.4.1 The influence of different inlet flow rates on the temperature field of the hydrogen production system
			2.3.4.2 Regulation of temperature field of hydrogen production system by different reactor structure
		2.3.5 Conclusion
	References
3 - CFD simulation, design, and optimization for biohydrogen systems
	3.1 Introduction
	3.2 Existing research and prospects
		3.2.1 Biological hydrogen production technology
		3.2.2 Advances in flow field simulation of biohydrogen reactor
	3.3 CFD simulation method
		3.3.1 Physical model
		3.3.2 Mathematical models
			3.3.2.1 Continuity equation
			3.3.2.2 Momentum equation
			3.3.2.3 Energy equation
			3.3.2.4 Grouped transmission equations
			3.3.2.5 Optical transmission equation
			3.3.2.6 Kinetic equations
		3.3.3 Solving method
		3.3.4 Summary and introduction of common commercial software
	3.4 Biological hydrogen production for reactor optimization
		3.4.1 Optimization of biophotolysis water to hydrogen reactor
		3.4.2 Optimization of dark fermentation hydrogen production reactor
		3.4.3 Optimization of photofermentation hydrogen production reactor
		3.4.4 Optimization of a dark–light cofermentation hydrogen production reactor
	3.5 Summary of this chapter
	References
4 - Artificial neural networks for modeling of biohydrogen production systems
	4.1 Introduction
	4.2 The basic principles of artificial neural networks
	4.3 Application of artificial neural networks on modeling of biohydrogen production
	4.4 Conclusion
	References
5 - The biomass-based hydrogen production yield prediction model based on PSO-BPNN
	5.1 Introduction
	5.2 Research data and methods
		5.2.1 Methodological overview of biomass hydrogen production processes
		5.2.2 Construction of a hydrogen yield prediction model
		5.2.3 Data collection
		5.2.4 Particle swarm optimization–backpropagation neural network algorithm
			5.2.4.1 Particle swarm optimization algorithm
			5.2.4.2 Backpropagation neural network algorithm
			5.2.4.3 Particle swarm optimization–backpropagation neural network algorithm
	5.3 Results and discussion
		5.3.1 Prediction results and analysis of hydrogen production yields from a single biomass substrate
		5.3.2 Prediction results and analysis of hydrogen production yields from various biomass substrates
	5.4 Conclusion
	References
6 - Cost–benefit analysis of waste-to-biohydrogen systems
	6.1 Introduction
		6.1.1 Hydrogen from biomass
		6.1.2 Hydrogen from waste
			6.1.2.1 Municipal solid wastes
			6.1.2.2 Food waste
			6.1.2.3 Agricultural residual waste
			6.1.2.4 Waste generated by animals
			6.1.2.5 Wastewater
	6.2 The methods for producing biohydrogen from waste
		6.2.1 Dark fermentation
		6.2.2 Photofermentation
		6.2.3 Dark-photo cofermentation with biological hydrogen production
	6.3 Cost analysis of different biohydrogen production methods
		6.3.1 Raw material cost
		6.3.2 Equipment operation cost
		6.3.3 Case study
	6.4 Environmental benefit analysis of waste biomass hydrogen
		6.4.1 Income caused by waste gas emission reduction
		6.4.2 Contribution rate of waste emission reduction
	6.5 Economic benefit analysis of waste biomass hydrogen
		6.5.1 Total cost of capital
		6.5.2 Annual production cost
		6.5.3 Annual profitability
		6.5.4 Sensitivity analysis
	References
7 - Technoeconomic analysis of biohydrogen production from waste
	7.1 Introduction
	7.2 Literature reviews
		7.2.1 Technical and economic evaluation of biohydrogen production from anaerobic fermentation
			7.2.1.1 The method of process simulation evaluation
			7.2.1.2 The method of case study evaluation
			7.2.1.3 Influence of equipment on the technical and economic feasibility of biohydrogen generation by fermentation
			7.2.1.4 Influence of process on the technical and economic feasibility for biohydrogen generation by fermentation
			7.2.1.5 Economic opinions on hydrogen production by dark fermentation
			7.2.1.6 Combined fermentation is considered to be more economical
			7.2.1.7 Energy analysis about biohydrogen production
	7.3 Methods
	7.4 Case study
		7.4.1 Solid-state fermentation combined with dark fermentation to produce hydrogen
		7.4.2 Two-step production of hydrogen and methane
		7.4.3 H2 production by dark–photofermentation
		7.4.4 Using sugar mill wastewater to produce hydrogen
		7.4.5 Using industrial wastewater to produce hydrogen
		7.4.6 Two promising biohydrogen production technologies for large-scale and commercial production
		7.4.7 Technical and economic analysis of the production of hydrogen combined with thermophilic fermentation and photoheterotrophi ...
		7.4.8 Technical and economic analysis of supercritical water-reforming glycerol to produce hydrogen
		7.4.9 The use of wastewater and agricultural waste to produce hydrogen
			7.4.9.1 Economic analysis
			7.4.9.2 Conclusion
		7.4.10 Technical and economic analysis of hydrogen production in California biomass gasification or biogas restructuring technology
		7.4.11 Technical and economic analysis of the supply of hydrogen from wastewater and wood to municipal public transport systems
	7.5 Conclusions and recommendations
	References
8 - Life cycle assessment of waste-to-biohydrogen systems
	8.1 Introduction to the life cycle assessment method
		8.1.1 Overview of life cycle assessment
		8.1.2 Life cycle assessment framework
			8.1.2.1 Goal and scope definition
			8.1.2.2 Inventory analysis
			8.1.2.3 Impact assessment
				8.1.2.3.1 Classification
				8.1.2.3.2 Characterization
				8.1.2.3.3 Valuation
				8.1.2.3.4 Discussion and interpretation
	8.2 Life cycle assessment methods and software
		8.2.1 Life cycle assessment methods
		8.2.2 Analysis software
	8.3 Progress of biohydrogen life cycle assessment
		8.3.1 Research status
		8.3.2 Case studies
			8.3.2.1 Cases (life cycle assessment of hydrogen produced from potato steam peels)
			8.3.2.2 Questions raised
			8.3.2.3 Solving problems
				8.3.2.3.1 Determination of objectives and scope
				8.3.2.3.2 Inventory analysis
				8.3.2.3.3 Impact assessment
					8.3.2.3.3.1 The “AF” and “H2+AF” life cycle impact assessment of potato steam skins
					8.3.2.3.3.2 Life cycle assessment of the “pretreatment” and “fermentation” phases
				8.3.2.3.4 Interpretation of results
			8.3.2.4 Energy consumption analysis results
			8.3.2.5 Ecological impact analysis results
	8.4 Evaluation of biohydrogen production by life cycle analysis
		8.4.1 Evaluation of the energy perspective
		8.4.2 Ecological perspective evaluation
	8.5 Conclusions
	References
9 - Multicriteria sustainability ranking of biohydrogen systems
	9.1 Introduction
	9.2 Biohydrogen production technology
		9.2.1 Thermochemical hydrogen production from biomass
			9.2.1.1 Hydrogen production from biomass gasification
			9.2.1.2 Hydrogen production by supercritical water conversion
			9.2.1.3 Hydrogen production from biomass pyrolysis
			9.2.1.4 High-temperature plasma hydrogen
			9.2.1.5 Hydrogen production by microwave pyrolysis and gasification
		9.2.2 Hydrogen production from biomass
			9.2.2.1 Photosynthetic hydrogen production
			9.2.2.2 Hydrogen production by anaerobic fermentation
	9.3 Principles and methods of constructing comprehensive evaluation index system
		9.3.1 Principles of constructing comprehensive evaluation index system
		9.3.2 Methods of constructing comprehensive evaluation index system
			9.3.2.1 Fuzzy evaluation method
			9.3.2.2 Principal component analysis
			9.3.2.3 System simulation method
	9.4 Comprehensive impact analysis of biomass hydrogen production technology
		9.4.1 Energy impact analysis of biomass hydrogen production technology
		9.4.2 Economic impact analysis of biomass hydrogen production technology
		9.4.3 Environmental impact analysis of biomass hydrogen production technology
	9.5 Multicriteria sustainability assessment of biohydrogen systems
	9.6 Conclusion
	References
10 - Sustainable supply chain design for waste to biohydrogen
	10.1 Introduction
	10.2 Supply chain structure of waste to biohydrogen
		10.2.1 Structure composition of supply chain
		10.2.2 Supply chain model of waste to biohydrogen
			10.2.2.1 The supply mode of waste
			10.2.2.2 Supply chain mode of hydrogen energy
	10.3 Sustainable supply chain design for hydrogen production from waste
		10.3.1 Goals of sustainable supply chain design
		10.3.2 Choosing sustainability assessment criteria
		10.3.3 Sustainable supply chain design
		10.3.4 Mathematical model of sustainable supply chain design
		10.3.5 The optimization of supply chain
	10.4 Challenges and obstacles to the supply chain
		10.4.1 Potential challenges
		10.4.2 Obstacle factors analysis
	10.5 Strategies to promote the sustainable development of the supply chain
		10.5.1 Internal management strategies of the supply chain
		10.5.2 External policy suggestions of supply chain
	References
11 - Outlook of biohydrogen from waste: quo vadis?
	11.1 Introduction
	11.2 Biohydrogen production technology
		11.2.1 Dark fermentation hydrogen production
		11.2.2 Photofermentation hydrogen production
		11.2.3 Dark–photofermentation hydrogen production
	11.3 SWOT analysis of biohydrogen from waste
		11.3.1 Strengths of biohydrogen production
		11.3.2 Weaknesses of biohydrogen production
		11.3.3 Opportunities of biohydrogen production
		11.3.4 Threat of biohydrogen production
	11.4 Conclusion
	References
Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
Back Cover




نظرات کاربران