دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [1 ed.] نویسندگان: Abd El-Fatah Abomohra, Qingyuan Wang, Jin Huang سری: ISBN (شابک) : 3030915697, 9783030915698 ناشر: Springer سال نشر: 2022 تعداد صفحات: 663 [651] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 12 Mb
در صورت تبدیل فایل کتاب Waste-to-Energy: Recent Developments and Future Perspectives towards Circular Economy به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب اتلاف به انرژی: تحولات اخیر و چشم اندازهای آینده نسبت به اقتصاد دایره ای نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Preface Contents About the Editors 1 An Overview of Municipal Wastes 1.1 Introduction 1.2 Classification and Types of Wastes 1.2.1 Agricultural Wastes 1.2.2 Municipal Solid Waste 1.2.3 Industrial Waste 1.2.4 Hazardous Waste 1.3 Municipal Waste Management Systems 1.4 Statistics of Wastes Production and Management 1.4.1 Waste Production 1.4.2 Waste Management 1.5 Impact of Applying Circular Economy Principles 1.5.1 Relation Between Circular Economy and Waste to Energy WTE 1.5.2 Different Circular Economy Business Models 1.5.3 Examples of Positive and Negative Impacts 1.6 Conclusions References 2 Different Waste Management Methods, Applications, and Limitations 2.1 Municipal Solid Wastes 2.2 Reduce, Reuse, and Recycle 2.2.1 Reduce 2.2.2 Reuse 2.2.3 Recycle 2.3 Landfill 2.3.1 Landfill Leachate and Gases 2.3.2 Landfill Classification 2.3.3 Modern Landfills 2.4 Incineration and Pyrolysis 2.4.1 Hazardous Wastes 2.4.2 Plastic Waste 2.5 Wastewater Treatment 2.5.1 Physical Methods 2.5.2 Chemical Methods 2.5.3 Biological Methods 2.6 CO2 Emission 2.6.1 Chemical Absorption 2.6.2 Oceanic Sequestration of CO2 2.6.3 Biological Method of CO2 Sequestration 2.6.4 Mineralization of CO2 as Inorganic Carbonates 2.7 Challenges and Future Perspectives 2.8 Conclusions References 3 Recent Advances in Circular Bioeconomy 3.1 Circular Bioeconomy: Concepts, Elements and Significance 3.1.1 Economic Growth in the Milieu of Finite Natural Resources 3.1.2 Circular Economy and Bioeconomy for Sustainable Growth 3.1.3 Circular Bioeconomy: The Integration of Bioeconomy and Circular Economy 3.1.4 Elements of Circular Bioeconomy 3.1.5 Significance of Circular Bioeconomy 3.2 Diversity of Biomass in Circular Bioeconomy Context 3.2.1 Significance of Biomass in Circular Bioeconomy 3.2.2 Variety of Biomass in Circular Bioeconomy 3.3 Biorefineries for Sustainable Waste Valorization: The Mainstay of Circular Bioeconomy 3.3.1 Types of Biorefineries 3.3.2 Significance of Biorefining in Circular Bioeconomy 3.3.3 Socioeconomic and Environmental Impacts of Sustainable Waste Valorization 3.4 Implementation of Circular Bioeconomy: Opportunities and Challenges 3.4.1 Opportunities 3.4.2 Challenges 3.5 Conclusions and Future Perspectives References 4 Biofuels: An Overview 4.1 Introduction 4.2 Types of Biofuels 4.2.1 Liquid Biofuels 4.2.2 Gaseous Biofuels 4.2.3 Solid Biofuels 4.3 Generations of Biofuel Feedstocks 4.3.1 First-Generation (G1) Biofuel Feedstocks 4.3.2 Second-Generation (G2) Biofuel Feedstocks 4.3.3 Third-Generation (G3) Biofuel Feedstocks 4.3.4 Fourth-Generation (G4) Biofuel Feedstocks 4.4 Technologies Used for Feedstocks Conversion to Biofuel 4.4.1 Pre-treatment and Hydrolysis 4.4.2 Biochemical Conversion (Including the Catalysts) 4.4.3 Thermochemical Conversion (Including the Catalysts) References 5 Thermochemical Conversion of Wastes 5.1 Introduction 5.2 Thermochemical Conversion Technologies 5.2.1 Combustion 5.2.2 Torrefaction 5.2.3 Pyrolysis 5.2.4 Gasification 5.2.5 Hydrothermal Liquefaction (HTL) 5.3 Thermochemical Conversion of Different Wastes 5.3.1 Thermochemical Conversion of Medical Wastes 5.3.2 Conversion of Waste Rubber Seed 5.3.3 Conversion of Sewage Sludge 5.3.4 Conversion of Non-lignocellulosic Biomass 5.3.5 Conversion of Plastic Wastes 5.3.6 Waste Tires as a Thermochemical Process Feedstock 5.3.7 Components of Lignocellulosic Biomass 5.3.8 Conversion of Food Wastes 5.3.9 Conversion of Algae Biomass 5.3.10 Conversion of Banana Leaves 5.3.11 Conversion of Rice Husk 5.3.12 Conversion of Sugarcane Bagasse 5.3.13 Conversion of Duckweed 5.3.14 Conversion of Straw Waste 5.4 Bio-oil Upgrading 5.5 Factors Affecting the Bio-oil Composition 5.6 Future Perspectives and Concluding Remarks 5.7 Conclusions References 6 Anaerobic Digestion of Waste for Biogas Production 6.1 Introduction 6.2 Methane and Biogas from Waste Materials in Rural Areas 6.2.1 Methane and Biogas from Straw 6.2.2 Methane and Biogas from Livestock and Poultry Manure 6.3 Methane and Biogas from Municipal Waste 6.3.1 Methane and Biogas Production from Domestic Waste 6.3.2 Methane and Biogas Production from Kitchen Waste 6.3.3 Methane and Biogas from Municipal Sludge 6.3.4 Methane and Biogas Production from Pharmaceutical Wastewater 6.4 Forest Waste Products for Methane and Biogas 6.5 Aquatic Plants Produce Methane and Biogas 6.6 Conclusions References 7 Waste Fermentation for Energy Recovery 7.1 Introduction 7.2 Fermentation Methods, Modes, and Techniques 7.2.1 Solid-State Fermentation 7.2.2 Liquid Fermentation 7.2.3 Simultaneous Saccharification and Fermentation 7.2.4 Pretreatment Techniques 7.3 Types of Energy from Fermentation 7.3.1 Ethanol 7.3.2 Butanol 7.4 Plants 7.4.1 Biodiversity of Floating Duckweed 7.4.2 Floating Ethanol 7.4.3 Duckweed Butanol 7.4.4 Duckweed Advanced Alcohol 7.5 Conclusions References 8 Esterification/Transesterification of Lipidic Wastes for Biodiesel Production 8.1 Introduction 8.2 Different Feedstocks for Biodiesel Production 8.2.1 Edible Plant Oils 8.2.2 Non-edible Plant Oils 8.2.3 Waste Cooking Oils 8.2.4 Fat, Oil, and Grease (FOG) 8.2.5 Dairy Wastes 8.2.6 Animal Waste Fats 8.2.7 Algal Oils 8.2.8 Potential of Different Feedstocks for Biodiesel Production 8.3 Overview of Biodiesel Production 8.3.1 Catalytic Transesterification 8.3.2 Conversion of Wastes to Catalysts for Biodiesel Production 8.3.3 Non-catalytic Transesterification 8.3.4 Microwave and Ultrasound-Assisted Transesterification 8.4 Biodiesel Quality, Performance, and Exhaust Emissions Characteristics 8.4.1 Biodiesel Characteristics 8.4.2 Engine Performance 8.4.3 Exhaust Emissions 8.5 Pretreatments, Downstream Processing, and By-Products Manipulation 8.5.1 Pretreatment 8.5.2 Downstream Processing and By-Products Manipulation 8.6 Economic Feasibility 8.7 Conclusions and Perspectives References 9 Microbial Fuel Cells (MFCs) for Waste Recycling and Energy Production 9.1 Introduction 9.2 Principles for MFCs 9.3 MFCs Microbiology 9.3.1 Mechanism of Electron Transfer 9.3.2 Electricigens 9.4 MFC Structure 9.4.1 Up-Flow MFC 9.4.2 Double-Chamber H-type MFC 9.4.3 Flat MFC 9.4.4 Double Tube Microbial Fuel Cell 9.4.5 Series MFC 9.5 Electrode Materials for MFCs 9.5.1 Anode Materials 9.5.2 Cathode Materials 9.5.3 Membrane 9.5.4 Electrolyte 9.6 Applications of MFCs 9.6.1 MFCs for Wastewater Treatment 9.6.2 Application of MFCs for Desalination 9.6.3 The Application of MFCs for Biosensors 9.7 Prospects of MFCs 9.7.1 Improving the Output Power of MFCs 9.7.2 Improving the Power Generation Capacity of MFCs 9.7.3 Increasing the Use of Biomass Energy 9.7.4 Research on the Combination of Multiple MFCs 9.8 Conclusions References 10 Energy Recovery from Fat, Oil and Grease (FOG) 10.1 Introduction 10.2 FOG Wastes (Composition and Technical Challenges) 10.3 Types of Pretreatments of FOG Wastes 10.3.1 Acid Esterification 10.3.2 Steam Stripping 10.3.3 Biological Pretreatments 10.3.4 Glycerolysis 10.3.5 Supercritical Esterification 10.4 Different Technologies of Bioenergy Production from FOG 10.4.1 Biodiesel 10.4.2 Anaerobic Technologies 10.4.3 Barriers for Biomethane and Degradation of FOGs by Anaerobic Community 10.4.4 Mitigation of the Inhibition Effect of LCFA Accumulation During Biomethanation 10.4.5 Microbial Activity Responsible for Biomethanization of FOG 10.5 Dual-Fuel Integrated Approach 10.5.1 Biohydrogen and Bioethanol 10.5.2 Sequential Biodiesel and Biomethane 10.6 Conclusions and Future Perspectives References 11 Energy Recovery from Nuisance Algae Blooms and Residues 11.1 Introduction 11.2 Algae: An Overview 11.3 Nuisance Algal Blooms 11.4 Environmental Issues 11.5 Potential Applications 11.5.1 Algae Blooms as a Source of Biofuels and Bioenergy 11.5.2 Food, Feed, Health, Agricultural, and Other Uses 11.6 Conclusions References 12 Organic Rankine Cycles (ORCs) for Waste Heat Utilization 12.1 Introduction 12.2 Thermo-environmental Optimization of a Novel Supercritical–Subcritical Organic Rankine Cycle 12.2.1 System Description of STORC 12.2.2 Analysis of STORC Operating Parameters 12.2.3 Thermo-economical Optimization of STORC 12.2.4 Thermo-environmental Optimization of STORC 12.3 Thermo-environmental Optimization of a Cascaded Organic Rankine Cycle (CORC) Using Mixture Working Fluids 12.3.1 System Description 12.3.2 Selection of Working Fluids 12.3.3 Multi-objective Optimization 12.4 Experimental Investigation of Heat Exchanger Characteristics on a 3 kW ORC 12.4.1 Experimental Setup Description 12.4.2 Comparison of Heat Transfer Performance with Various Mass Fraction 12.4.3 Comparison Between the Experimental Test and Simulation Result Without Considering the Pressure Drop 12.5 Conclusions References 13 CO2-Mediated Energy Conversion and Recycling 13.1 Introduction 13.2 Basics for CO2 Utilization 13.3 CO2 Based Fuel Conversion 13.3.1 Syngas Production 13.3.2 Methanol 13.3.3 Methane 13.3.4 Hydrocarbons (C2+) 13.4 Polymers—CO2 Based Plastics 13.4.1 Major Advantages of CO2 Based Plastics 13.4.2 Applications of CO2 Based Plastics 13.4.3 Recycling of Plastics 13.5 Microbial CO2 Fixation and Conversion 13.5.1 Mechanism of Microbial Carbon Fixation 13.5.2 Biomethane 13.5.3 Hydrocarbons 13.5.4 Organic Acids 13.5.5 Lipids 13.5.6 Bioplastics 13.6 Environmental Impact and Future Perspective of CO2 Mediated Energy Conversion 13.7 Conclusion References 14 Plastic Recycling for Energy Production 14.1 Introduction 14.2 Types of Plastic 14.2.1 Polyethylene Terephthalate (PET) 14.2.2 High-Density Polyethylene (HDPE) 14.2.3 Polyvinyl Chloride (PVC) 14.2.4 Low-Density Polyethylene (LDPE) 14.2.5 Polypropylene (PP) 14.2.6 Polystyrene (PS) 14.2.7 Other 14.3 Global Potential of Plastic Production 14.4 Conventional Methods for the Treatment of Plastics Waste 14.4.1 Overview of Plastic Waste Recycling 14.4.2 Recycling of Plastic Wastes 14.4.3 Recycling Techniques 14.5 Plastic Recycling for the Production of Value-Added Products 14.5.1 Melt Processing of Thermoplastics 14.5.2 Heat Generation and Distribution 14.5.3 Reprocessing Thermoplastic Recycles 14.5.4 Plastic Conversion to Fuel 14.5.5 Problems Associated with Plastic Recycling Using Conventional Methods 14.5.6 Adverse Environmental Effects of Plastics Recycling by Conventional Methods 14.5.7 Limitations of Different Recycling Methods 14.6 Methods Used for Conversion of Waste Plastic to Energy 14.6.1 Thermal Degradation 14.6.2 Chemical Degradation 14.6.3 Microbial or Biological Degradation of Waste Plastics 14.7 Microbial Enzymes Used in Plastic Degradation 14.8 Economic Feasibility of Plastic Conversion to Fuel 14.9 Conclusions and Recommendations References 15 Microbial-Mediated Lignocellulose Conversion to Biodiesel 15.1 Introduction 15.2 Different Biodiesel Feedstocks 15.2.1 Terrestrial Oil-Crops 15.2.2 Lipidic Wastes 15.2.3 Indirect Conversion of Lignocelluloses 15.3 Oleaginous Microbial Conversion 15.4 Structure of Lignocellulosic Biomass (LCB) 15.4.1 Impact of Structural Features on Fiber Hydrolysis 15.4.2 The Objectives of Pretreatment 15.5 Pretreatment Technologies 15.5.1 Physical Pretreatment 15.5.2 Chemical Pretreatment 15.5.3 Biological Pretreatment 15.5.4 Innovative Pretreatment Technology 15.6 Cultivation of Microalgae on Lignocellulosic Material for Biodiesel Production 15.6.1 Merits of Microalgae Biofilm Systems 15.6.2 Factors Affecting the Biosystems of Algal Biocarriers 15.7 From Pretreated LCB to Lipid at Molecular Level 15.7.1 Lipid Production in Microalgae Compared to Other Oleaginous Microbes 15.7.2 Biotechnological Implications and Prospective 15.8 Conclusions and Future Perspectives References 16 Insect-Mediated Waste Conversion 16.1 Introduction 16.2 Biological Characteristics of Resource Insects 16.2.1 Black Soldier Fly 16.2.2 House Fly 16.2.3 Flower Chafer Beetle 16.2.4 Yellow Mealworm 16.2.5 Fresh Fly and Blowfly 16.3 Insect Utilization of Organic Waste 16.3.1 Food Waste 16.3.2 Livestock Manure 16.3.3 Industrial Waste 16.3.4 Agricultural Waste 16.4 Upscaling Insect-Based Waste Bioconversion 16.4.1 Advantages and Limitations 16.4.2 Insect Breeding and Genetic Manipulation 16.4.3 Waste Fermentation 16.4.4 Probiotic Addition 16.5 Regulatory Affairs and Authorization 16.5.1 The Global Situation 16.6 Conclusions and Perspective Work References 17 Phycoremediation: Role of Microalgae in Waste Management and Energy Production 17.1 Microalgae and Culture Conditions: Overview 17.1.1 Light 17.1.2 Temperature 17.1.3 pH 17.1.4 Aeration and Agitation 17.1.5 Nutrients 17.2 Phycoremediation 17.2.1 The Role of Microalgae in the Effluent Treatment 17.2.2 Facultative Ponds 17.2.3 Activated Sludge Systems 17.2.4 Microalgae Cultivation Systems 17.3 Biological Immobilization Systems 17.3.1 Attachment or Adsorption 17.3.2 Self-Immobilization 17.3.3 Entrapment Within a Matrix 17.3.4 Cells Contained Behind a Barrier 17.4 Cultivation of Immobilized Microalgae 17.4.1 Fluidized Bed Photobioreactors 17.4.2 Biofilm Photobioreactors 17.5 Bioenergy from Microalgae 17.5.1 Biodiesel 17.5.2 Bioethanol 17.5.3 Biomethane and Biohydrogen 17.5.4 Biobutanol 17.6 Conclusions and Recommendations References 18 Waste to Energy Plant in Spain: A Case Study Using Technoeconomic Analysis 18.1 Introduction 18.1.1 Waste to Energy Facilities in Spain 18.2 Methodology and Data 18.2.1 Objective Definition 18.2.2 Description of the Scope of the Study 18.2.3 Waste to Energy Technology 18.2.4 Stakeholders Involved 18.2.5 Analysis of Private Revenues and Costs 18.3 Overview of Environmental and Social Impacts of the ERF 18.3.1 Use of Waste 18.3.2 Reduce Waste Sent to Landfill 18.3.3 Willingness to Pay for Renewable Energy 18.3.4 Dependence of Other Companies 18.3.5 Environmental 18.3.6 Climate Change 18.3.7 Public Health 18.3.8 Quality Life 18.3.9 Education 18.3.10 Economic Development of the Area 18.4 Monetary Valuation of Externalities 18.5 Sensitivity Analysis 18.5.1 CO2 Emissions 18.5.2 Public Health 18.5.3 Opportunity Cost of Land 18.6 Conclusions and Recommendations References 19 Case Study in Arid and Semi-arid Regions 19.1 Introduction 19.2 Waste Feedstock 19.2.1 Food Loss 19.2.2 Sewage Sludge 19.2.3 Halophytes 19.2.4 Date Palm Waste 19.2.5 Municipal Solid Waste (MSW) 19.2.6 Other Synthetic and Industrial Waste 19.3 Waste Characteristics 19.3.1 Physical Characteristics 19.3.2 Chemical Characteristics 19.3.3 Thermal Characteristics 19.4 Waste-to-Energy Technologies 19.4.1 Thermochemical Conversion 19.4.2 Biological and Chemical Conversion 19.5 Case Studies 19.5.1 Pyrolysis of Sewage Sludge, Salicornia, and Date Palm 19.5.2 Anaerobic Digestion of Food Waste 19.5.3 Transesterification and Fermentation of Food Waste 19.6 Challenges and Recommendations 19.7 Conclusions References 20 Integrated Approaches and Future Perspectives 20.1 Waste Biorefinery as a Recent Trend Towards Circular Bioeconomy 20.2 Integrated Waste Biofuel Production Systems 20.2.1 Jet Biofuel, Ethanol and Power Co-production from Lipid-Cane Whole Crop 20.2.2 Power Generation and Bio-oil Co-production from Jatropha Whole Fruit and Wastes 20.2.3 Biodiesel and Bioethanol Co-production from Waste Glycerol 20.2.4 Biodiesel Followed by Biogas Production from Fat, Oil and Grease (FOG) 20.3 Coastal Integrated Marine Biorefinery (CIMB) System for the Production of Biofuels, High Value Chemicals and Co-products 20.3.1 Bioethanol Followed by Biodiesel Production from Macroalgal Blooms Using a CIMB System 20.3.2 Bioethanol Followed by Biodiesel then Biogas Production from Macroalgal Blooms Using Advanced CIMB System 20.3.3 Biogas Followed by Biodiesel Production from Macroalgal Blooms Using Advanced CIMB System 20.4 Role of Catalysis in Bioenergy Production 20.4.1 Catalysis Role in Pre-treatment of Biomass Waste 20.4.2 Catalysis Role in Lignocellulosic Biomass Waste Conversion 20.4.3 Catalysis Role in Algae Biomass Waste Conversion 20.4.4 Photocatalysis Role in Biomass Waste Conversion 20.5 The Importance of Modelling for Bioenergy and the Role of Wastes 20.5.1 The Role of Modelling in Energy Strategy Development 20.5.2 Role of Resource Modelling Within Bioenergy Strategy Development 20.5.3 Biomass Resource Modelling—Assessing the Potential of Waste Resources 20.5.4 Role of Life Cycle Assessment Modelling Within Bioenergy Strategy Development 20.5.5 Role of Techno-economic Assessment Modelling Within Bioenergy Strategy Development 20.6 Influence of Policy, Legislation and Social Acceptance on Bioenergy from Waste Projects 20.6.1 Policy for Bioenergy from Waste Projects in Different Countries 20.6.2 Gaining Public Acceptance for Energy for Waste Projects 20.7 Conclusions References