ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Waste-to-Energy: Recent Developments and Future Perspectives towards Circular Economy

دانلود کتاب اتلاف به انرژی: تحولات اخیر و چشم اندازهای آینده نسبت به اقتصاد دایره ای

Waste-to-Energy: Recent Developments and Future Perspectives towards Circular Economy

مشخصات کتاب

Waste-to-Energy: Recent Developments and Future Perspectives towards Circular Economy

ویرایش: [1 ed.] 
نویسندگان: , ,   
سری:  
ISBN (شابک) : 3030915697, 9783030915698 
ناشر: Springer 
سال نشر: 2022 
تعداد صفحات: 663
[651] 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 12 Mb 

قیمت کتاب (تومان) : 52,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 3


در صورت تبدیل فایل کتاب Waste-to-Energy: Recent Developments and Future Perspectives towards Circular Economy به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب اتلاف به انرژی: تحولات اخیر و چشم اندازهای آینده نسبت به اقتصاد دایره ای نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب اتلاف به انرژی: تحولات اخیر و چشم اندازهای آینده نسبت به اقتصاد دایره ای

این کتاب به نیازهای دانشجویان، محققان، و همچنین مهندسان و دیگر متخصصان یا خوانندگان علاقه مند به پیشرفت های اخیر سوخت زیستی و مدیریت کارآمد زباله می پردازد. در زمینه مصرف انرژی، بیش از 85 درصد از کل انرژی مصرف شده از منابع فسیلی تجدیدناپذیر تامین می شود. توسعه منابع انرژی تجدیدپذیر جدید، به ویژه تولید سوخت زیستی از زباله، توجه روزافزونی را به خود جلب کرده است. این کتاب در سه بخش، یعنی بخش اول: مدیریت پسماند متعارف سازماندهی شده است. بخش دوم: از زباله تا انرژی سبز. و بخش سوم: مطالعات موردی و چشم اندازهای آینده. در هر بخش، فصل‌های مربوط به موضوع ارائه می‌شود که حاوی دانش جامع و پیشرفته از موضوعات است. به طور کلی، این کتاب پیشرفت‌های اخیر، پیشرفت‌ها، چالش‌ها و چشم‌اندازهای آینده رویکرد زباله به انرژی را با استفاده از انواع مختلف زباله به‌عنوان ماده اولیه برای سوخت‌های زیستی جایگزین و سایر رویکردهای یکپارچه مانند تصفیه فاضلاب، تخریب پلاستیک و ترسیب CO2 در بر می‌گیرد. راهی مقرون به صرفه و سازگار با محیط زیست علاوه بر این، مسیرهای مختلف بازیافت زباله برای افزایش تولید سوخت زیستی و مطالعات موردی با تجزیه و تحلیل زیست محیطی و اقتصادی ارائه شده است. مطالعات موردی ارائه‌شده و دیدگاه‌های آتی در بخش III مکمل‌کننده فصل‌ها هستند، زیرا توسط کارشناسان کسب‌وکارهای انرژی زیستی که واقعاً با مشکلات دنیای واقعی مواجه هستند، نوشته شده‌اند.

توضیحاتی درمورد کتاب به خارجی

This book addresses the needs of students, researchers, as well as engineers and other professionals or readers interested in recent advances of biofuel and efficient waste management. In the context of energy consumption, over 85% of the total consumed energy comes from non-renewable fossil resources. Developing new renewable energy resources, especially biofuel production from wastes, has received increasing attention. The book is organized into three sections, namely Section I: Conventional waste management; Section II: From waste to green energy; and Section III: Case studies and future perspectives. Each section presents topic-specific chapters, which contain comprehensive and advanced knowledge of the subjects. Overall, the book covers the recent advances, breakthroughs, challenges, and future perspectives of waste-to-energy approach using different kinds of wastes as a feedstock for alternative biofuels and other integrated approaches such as wastewater treatment, plastic degradation, and CO2 sequestration in a cost-effective and eco-friendly way. In addition, different routes of waste recycling for enhanced biofuel production and case studies are presented with environmental and economic analysis. The presented case studies and future perspectives under Section III complement the chapters as they are authored by experts from bioenergy businesses who actually encounter real-world problems.


فهرست مطالب

Preface
Contents
About the Editors
1 An Overview of Municipal Wastes
	1.1 Introduction
	1.2 Classification and Types of Wastes
		1.2.1 Agricultural Wastes
		1.2.2 Municipal Solid Waste
		1.2.3 Industrial Waste
		1.2.4 Hazardous Waste
	1.3 Municipal Waste Management Systems
	1.4 Statistics of Wastes Production and Management
		1.4.1 Waste Production
		1.4.2 Waste Management
	1.5 Impact of Applying Circular Economy Principles
		1.5.1 Relation Between Circular Economy and Waste to Energy WTE
		1.5.2 Different Circular Economy Business Models
		1.5.3 Examples of Positive and Negative Impacts
	1.6 Conclusions
	References
2 Different Waste Management Methods, Applications, and Limitations
	2.1 Municipal Solid Wastes
	2.2 Reduce, Reuse, and Recycle
		2.2.1 Reduce
		2.2.2 Reuse
		2.2.3 Recycle
	2.3 Landfill
		2.3.1 Landfill Leachate and Gases
		2.3.2 Landfill Classification
		2.3.3 Modern Landfills
	2.4 Incineration and Pyrolysis
		2.4.1 Hazardous Wastes
		2.4.2 Plastic Waste
	2.5 Wastewater Treatment
		2.5.1 Physical Methods
		2.5.2 Chemical Methods
		2.5.3 Biological Methods
	2.6 CO2 Emission
		2.6.1 Chemical Absorption
		2.6.2 Oceanic Sequestration of CO2
		2.6.3 Biological Method of CO2 Sequestration
		2.6.4 Mineralization of CO2 as Inorganic Carbonates
	2.7 Challenges and Future Perspectives
	2.8 Conclusions
	References
3 Recent Advances in Circular Bioeconomy
	3.1 Circular Bioeconomy: Concepts, Elements and Significance
		3.1.1 Economic Growth in the Milieu of Finite Natural Resources
		3.1.2 Circular Economy and Bioeconomy for Sustainable Growth
		3.1.3 Circular Bioeconomy: The Integration of Bioeconomy and Circular Economy
		3.1.4 Elements of Circular Bioeconomy
		3.1.5 Significance of Circular Bioeconomy
	3.2 Diversity of Biomass in Circular Bioeconomy Context
		3.2.1 Significance of Biomass in Circular Bioeconomy
		3.2.2 Variety of Biomass in Circular Bioeconomy
	3.3 Biorefineries for Sustainable Waste Valorization: The Mainstay of Circular Bioeconomy
		3.3.1 Types of Biorefineries
		3.3.2 Significance of Biorefining in Circular Bioeconomy
		3.3.3 Socioeconomic and Environmental Impacts of Sustainable Waste Valorization
	3.4 Implementation of Circular Bioeconomy: Opportunities and Challenges
		3.4.1 Opportunities
		3.4.2 Challenges
	3.5 Conclusions and Future Perspectives
	References
4 Biofuels: An Overview
	4.1 Introduction
	4.2 Types of Biofuels
		4.2.1 Liquid Biofuels
		4.2.2 Gaseous Biofuels
		4.2.3 Solid Biofuels
	4.3 Generations of Biofuel Feedstocks
		4.3.1 First-Generation (G1) Biofuel Feedstocks
		4.3.2 Second-Generation (G2) Biofuel Feedstocks
		4.3.3 Third-Generation (G3) Biofuel Feedstocks
		4.3.4 Fourth-Generation (G4) Biofuel Feedstocks
	4.4 Technologies Used for Feedstocks Conversion to Biofuel
		4.4.1 Pre-treatment and Hydrolysis
		4.4.2 Biochemical Conversion (Including the Catalysts)
		4.4.3 Thermochemical Conversion (Including the Catalysts)
	References
5 Thermochemical Conversion of Wastes
	5.1 Introduction
	5.2 Thermochemical Conversion Technologies
		5.2.1 Combustion
		5.2.2 Torrefaction
		5.2.3 Pyrolysis
		5.2.4 Gasification
		5.2.5 Hydrothermal Liquefaction (HTL)
	5.3 Thermochemical Conversion of Different Wastes
		5.3.1 Thermochemical Conversion of Medical Wastes
		5.3.2 Conversion of Waste Rubber Seed
		5.3.3 Conversion of Sewage Sludge
		5.3.4 Conversion of Non-lignocellulosic Biomass
		5.3.5 Conversion of Plastic Wastes
		5.3.6 Waste Tires as a Thermochemical Process Feedstock
		5.3.7 Components of Lignocellulosic Biomass
		5.3.8 Conversion of Food Wastes
		5.3.9 Conversion of Algae Biomass
		5.3.10 Conversion of Banana Leaves
		5.3.11 Conversion of Rice Husk
		5.3.12 Conversion of Sugarcane Bagasse
		5.3.13 Conversion of Duckweed
		5.3.14 Conversion of Straw Waste
	5.4 Bio-oil Upgrading
	5.5 Factors Affecting the Bio-oil Composition
	5.6 Future Perspectives and Concluding Remarks
	5.7 Conclusions
	References
6 Anaerobic Digestion of Waste for Biogas Production
	6.1 Introduction
	6.2 Methane and Biogas from Waste Materials in Rural Areas
		6.2.1 Methane and Biogas from Straw
		6.2.2 Methane and Biogas from Livestock and Poultry Manure
	6.3 Methane and Biogas from Municipal Waste
		6.3.1 Methane and Biogas Production from Domestic Waste
		6.3.2 Methane and Biogas Production from Kitchen Waste
		6.3.3 Methane and Biogas from Municipal Sludge
		6.3.4 Methane and Biogas Production from Pharmaceutical Wastewater
	6.4 Forest Waste Products for Methane and Biogas
	6.5 Aquatic Plants Produce Methane and Biogas
	6.6 Conclusions
	References
7 Waste Fermentation for Energy Recovery
	7.1 Introduction
	7.2 Fermentation Methods, Modes, and Techniques
		7.2.1 Solid-State Fermentation
		7.2.2 Liquid Fermentation
		7.2.3 Simultaneous Saccharification and Fermentation
		7.2.4 Pretreatment Techniques
	7.3 Types of Energy from Fermentation
		7.3.1 Ethanol
		7.3.2 Butanol
	7.4 Plants
		7.4.1 Biodiversity of Floating Duckweed
		7.4.2 Floating Ethanol
		7.4.3 Duckweed Butanol
		7.4.4 Duckweed Advanced Alcohol
	7.5 Conclusions
	References
8 Esterification/Transesterification of Lipidic Wastes for Biodiesel Production
	8.1 Introduction
	8.2 Different Feedstocks for Biodiesel Production
		8.2.1 Edible Plant Oils
		8.2.2 Non-edible Plant Oils
		8.2.3 Waste Cooking Oils
		8.2.4 Fat, Oil, and Grease (FOG)
		8.2.5 Dairy Wastes
		8.2.6 Animal Waste Fats
		8.2.7 Algal Oils
		8.2.8 Potential of Different Feedstocks for Biodiesel Production
	8.3 Overview of Biodiesel Production
		8.3.1 Catalytic Transesterification
		8.3.2 Conversion of Wastes to Catalysts for Biodiesel Production
		8.3.3 Non-catalytic Transesterification
		8.3.4 Microwave and Ultrasound-Assisted Transesterification
	8.4 Biodiesel Quality, Performance, and Exhaust Emissions Characteristics
		8.4.1 Biodiesel Characteristics
		8.4.2 Engine Performance
		8.4.3 Exhaust Emissions
	8.5 Pretreatments, Downstream Processing, and By-Products Manipulation
		8.5.1 Pretreatment
		8.5.2 Downstream Processing and By-Products Manipulation
	8.6 Economic Feasibility
	8.7 Conclusions and Perspectives
	References
9 Microbial Fuel Cells (MFCs) for Waste Recycling and Energy Production
	9.1 Introduction
	9.2 Principles for MFCs
	9.3 MFCs Microbiology
		9.3.1 Mechanism of Electron Transfer
		9.3.2 Electricigens
	9.4 MFC Structure
		9.4.1 Up-Flow MFC
		9.4.2 Double-Chamber H-type MFC
		9.4.3 Flat MFC
		9.4.4 Double Tube Microbial Fuel Cell
		9.4.5 Series MFC
	9.5 Electrode Materials for MFCs
		9.5.1 Anode Materials
		9.5.2 Cathode Materials
		9.5.3 Membrane
		9.5.4 Electrolyte
	9.6 Applications of MFCs
		9.6.1 MFCs for Wastewater Treatment
		9.6.2 Application of MFCs for Desalination
		9.6.3 The Application of MFCs for Biosensors
	9.7 Prospects of MFCs
		9.7.1 Improving the Output Power of MFCs
		9.7.2 Improving the Power Generation Capacity of MFCs
		9.7.3 Increasing the Use of Biomass Energy
		9.7.4 Research on the Combination of Multiple MFCs
	9.8 Conclusions
	References
10 Energy Recovery from Fat, Oil and Grease (FOG)
	10.1 Introduction
	10.2 FOG Wastes (Composition and Technical Challenges)
	10.3 Types of Pretreatments of FOG Wastes
		10.3.1 Acid Esterification
		10.3.2 Steam Stripping
		10.3.3 Biological Pretreatments
		10.3.4 Glycerolysis
		10.3.5 Supercritical Esterification
	10.4 Different Technologies of Bioenergy Production from FOG
		10.4.1 Biodiesel
		10.4.2 Anaerobic Technologies
		10.4.3 Barriers for Biomethane and Degradation of FOGs by Anaerobic Community
		10.4.4 Mitigation of the Inhibition Effect of LCFA Accumulation During Biomethanation
		10.4.5 Microbial Activity Responsible for Biomethanization of FOG
	10.5 Dual-Fuel Integrated Approach
		10.5.1 Biohydrogen and Bioethanol
		10.5.2 Sequential Biodiesel and Biomethane
	10.6 Conclusions and Future Perspectives
	References
11 Energy Recovery from Nuisance Algae Blooms and Residues
	11.1 Introduction
	11.2 Algae: An Overview
	11.3 Nuisance Algal Blooms
	11.4 Environmental Issues
	11.5 Potential Applications
		11.5.1 Algae Blooms as a Source of Biofuels and Bioenergy
		11.5.2 Food, Feed, Health, Agricultural, and Other Uses
	11.6 Conclusions
	References
12 Organic Rankine Cycles (ORCs) for Waste Heat Utilization
	12.1 Introduction
	12.2 Thermo-environmental Optimization of a Novel Supercritical–Subcritical Organic Rankine Cycle
		12.2.1 System Description of STORC
		12.2.2 Analysis of STORC Operating Parameters
		12.2.3 Thermo-economical Optimization of STORC
		12.2.4 Thermo-environmental Optimization of STORC
	12.3 Thermo-environmental Optimization of a Cascaded Organic Rankine Cycle (CORC) Using Mixture Working Fluids
		12.3.1 System Description
		12.3.2 Selection of Working Fluids
		12.3.3 Multi-objective Optimization
	12.4 Experimental Investigation of Heat Exchanger Characteristics on a 3 kW ORC
		12.4.1 Experimental Setup Description
		12.4.2 Comparison of Heat Transfer Performance with Various Mass Fraction
		12.4.3 Comparison Between the Experimental Test and Simulation Result Without Considering the Pressure Drop
	12.5 Conclusions
	References
13 CO2-Mediated Energy Conversion and Recycling
	13.1 Introduction
	13.2 Basics for CO2 Utilization
	13.3 CO2 Based Fuel Conversion
		13.3.1 Syngas Production
		13.3.2 Methanol
		13.3.3 Methane
		13.3.4 Hydrocarbons (C2+)
	13.4 Polymers—CO2 Based Plastics
		13.4.1 Major Advantages of CO2 Based Plastics
		13.4.2 Applications of CO2 Based Plastics
		13.4.3 Recycling of Plastics
	13.5 Microbial CO2 Fixation and Conversion
		13.5.1 Mechanism of Microbial Carbon Fixation
		13.5.2 Biomethane
		13.5.3 Hydrocarbons
		13.5.4 Organic Acids
		13.5.5 Lipids
		13.5.6 Bioplastics
	13.6 Environmental Impact and Future Perspective of CO2 Mediated Energy Conversion
	13.7 Conclusion
	References
14 Plastic Recycling for Energy Production
	14.1 Introduction
	14.2 Types of Plastic
		14.2.1 Polyethylene Terephthalate (PET)
		14.2.2 High-Density Polyethylene (HDPE)
		14.2.3 Polyvinyl Chloride (PVC)
		14.2.4 Low-Density Polyethylene (LDPE)
		14.2.5 Polypropylene (PP)
		14.2.6 Polystyrene (PS)
		14.2.7 Other
	14.3 Global Potential of Plastic Production
	14.4 Conventional Methods for the Treatment of Plastics Waste
		14.4.1 Overview of Plastic Waste Recycling
		14.4.2 Recycling of Plastic Wastes
		14.4.3 Recycling Techniques
	14.5 Plastic Recycling for the Production of Value-Added Products
		14.5.1 Melt Processing of Thermoplastics
		14.5.2 Heat Generation and Distribution
		14.5.3 Reprocessing Thermoplastic Recycles
		14.5.4 Plastic Conversion to Fuel
		14.5.5 Problems Associated with Plastic Recycling Using Conventional Methods
		14.5.6 Adverse Environmental Effects of Plastics Recycling by Conventional Methods
		14.5.7 Limitations of Different Recycling Methods
	14.6 Methods Used for Conversion of Waste Plastic to Energy
		14.6.1 Thermal Degradation
		14.6.2 Chemical Degradation
		14.6.3 Microbial or Biological Degradation of Waste Plastics
	14.7 Microbial Enzymes Used in Plastic Degradation
	14.8 Economic Feasibility of Plastic Conversion to Fuel
	14.9 Conclusions and Recommendations
	References
15 Microbial-Mediated Lignocellulose Conversion to Biodiesel
	15.1 Introduction
	15.2 Different Biodiesel Feedstocks
		15.2.1 Terrestrial Oil-Crops
		15.2.2 Lipidic Wastes
		15.2.3 Indirect Conversion of Lignocelluloses
	15.3 Oleaginous Microbial Conversion
	15.4 Structure of Lignocellulosic Biomass (LCB)
		15.4.1 Impact of Structural Features on Fiber Hydrolysis
		15.4.2 The Objectives of Pretreatment
	15.5 Pretreatment Technologies
		15.5.1 Physical Pretreatment
		15.5.2 Chemical Pretreatment
		15.5.3 Biological Pretreatment
		15.5.4 Innovative Pretreatment Technology
	15.6 Cultivation of Microalgae on Lignocellulosic Material for Biodiesel Production
		15.6.1 Merits of Microalgae Biofilm Systems
		15.6.2 Factors Affecting the Biosystems of Algal Biocarriers
	15.7 From Pretreated LCB to Lipid at Molecular Level
		15.7.1 Lipid Production in Microalgae Compared to Other Oleaginous Microbes
		15.7.2 Biotechnological Implications and Prospective
	15.8 Conclusions and Future Perspectives
	References
16 Insect-Mediated Waste Conversion
	16.1 Introduction
	16.2 Biological Characteristics of Resource Insects
		16.2.1 Black Soldier Fly
		16.2.2 House Fly
		16.2.3 Flower Chafer Beetle
		16.2.4 Yellow Mealworm
		16.2.5 Fresh Fly and Blowfly
	16.3 Insect Utilization of Organic Waste
		16.3.1 Food Waste
		16.3.2 Livestock Manure
		16.3.3 Industrial Waste
		16.3.4 Agricultural Waste
	16.4 Upscaling Insect-Based Waste Bioconversion
		16.4.1 Advantages and Limitations
		16.4.2 Insect Breeding and Genetic Manipulation
		16.4.3 Waste Fermentation
		16.4.4 Probiotic Addition
	16.5 Regulatory Affairs and Authorization
		16.5.1 The Global Situation
	16.6 Conclusions and Perspective Work
	References
17 Phycoremediation: Role of Microalgae in Waste Management and Energy Production
	17.1 Microalgae and Culture Conditions: Overview
		17.1.1 Light
		17.1.2 Temperature
		17.1.3 pH
		17.1.4 Aeration and Agitation
		17.1.5 Nutrients
	17.2 Phycoremediation
		17.2.1 The Role of Microalgae in the Effluent Treatment
		17.2.2 Facultative Ponds
		17.2.3 Activated Sludge Systems
		17.2.4 Microalgae Cultivation Systems
	17.3 Biological Immobilization Systems
		17.3.1 Attachment or Adsorption
		17.3.2 Self-Immobilization
		17.3.3 Entrapment Within a Matrix
		17.3.4 Cells Contained Behind a Barrier
	17.4 Cultivation of Immobilized Microalgae
		17.4.1 Fluidized Bed Photobioreactors
		17.4.2 Biofilm Photobioreactors
	17.5 Bioenergy from Microalgae
		17.5.1 Biodiesel
		17.5.2 Bioethanol
		17.5.3 Biomethane and Biohydrogen
		17.5.4 Biobutanol
	17.6 Conclusions and Recommendations
	References
18 Waste to Energy Plant in Spain: A Case Study Using Technoeconomic Analysis
	18.1 Introduction
		18.1.1 Waste to Energy Facilities in Spain
	18.2 Methodology and Data
		18.2.1 Objective Definition
		18.2.2 Description of the Scope of the Study
		18.2.3 Waste to Energy Technology
		18.2.4 Stakeholders Involved
		18.2.5 Analysis of Private Revenues and Costs
	18.3 Overview of Environmental and Social Impacts of the ERF
		18.3.1 Use of Waste
		18.3.2 Reduce Waste Sent to Landfill
		18.3.3 Willingness to Pay for Renewable Energy
		18.3.4 Dependence of Other Companies
		18.3.5 Environmental
		18.3.6 Climate Change
		18.3.7 Public Health
		18.3.8 Quality Life
		18.3.9 Education
		18.3.10 Economic Development of the Area
	18.4 Monetary Valuation of Externalities
	18.5 Sensitivity Analysis
		18.5.1 CO2 Emissions
		18.5.2 Public Health
		18.5.3 Opportunity Cost of Land
	18.6 Conclusions and Recommendations
	References
19 Case Study in Arid and Semi-arid Regions
	19.1 Introduction
	19.2 Waste Feedstock
		19.2.1 Food Loss
		19.2.2 Sewage Sludge
		19.2.3 Halophytes
		19.2.4 Date Palm Waste
		19.2.5 Municipal Solid Waste (MSW)
		19.2.6 Other Synthetic and Industrial Waste
	19.3 Waste Characteristics
		19.3.1 Physical Characteristics
		19.3.2 Chemical Characteristics
		19.3.3 Thermal Characteristics
	19.4 Waste-to-Energy Technologies
		19.4.1 Thermochemical Conversion
		19.4.2 Biological and Chemical Conversion
	19.5 Case Studies
		19.5.1 Pyrolysis of Sewage Sludge, Salicornia, and Date Palm
		19.5.2 Anaerobic Digestion of Food Waste
		19.5.3 Transesterification and Fermentation of Food Waste
	19.6 Challenges and Recommendations
	19.7 Conclusions
	References
20 Integrated Approaches and Future Perspectives
	20.1 Waste Biorefinery as a Recent Trend Towards Circular Bioeconomy
	20.2 Integrated Waste Biofuel Production Systems
		20.2.1 Jet Biofuel, Ethanol and Power Co-production from Lipid-Cane Whole Crop
		20.2.2 Power Generation and Bio-oil Co-production from Jatropha Whole Fruit and Wastes
		20.2.3 Biodiesel and Bioethanol Co-production from Waste Glycerol
		20.2.4 Biodiesel Followed by Biogas Production from Fat, Oil and Grease (FOG)
	20.3 Coastal Integrated Marine Biorefinery (CIMB) System for the Production of Biofuels, High Value Chemicals and Co-products
		20.3.1 Bioethanol Followed by Biodiesel Production from Macroalgal Blooms Using a CIMB System
		20.3.2 Bioethanol Followed by Biodiesel then Biogas Production from Macroalgal Blooms Using Advanced CIMB System
		20.3.3 Biogas Followed by Biodiesel Production from Macroalgal Blooms Using Advanced CIMB System
	20.4 Role of Catalysis in Bioenergy Production
		20.4.1 Catalysis Role in Pre-treatment of Biomass Waste
		20.4.2 Catalysis Role in Lignocellulosic Biomass Waste Conversion
		20.4.3 Catalysis Role in Algae Biomass Waste Conversion
		20.4.4 Photocatalysis Role in Biomass Waste Conversion
	20.5 The Importance of Modelling for Bioenergy and the Role of Wastes
		20.5.1 The Role of Modelling in Energy Strategy Development
		20.5.2 Role of Resource Modelling Within Bioenergy Strategy Development
		20.5.3 Biomass Resource Modelling—Assessing the Potential of Waste Resources
		20.5.4 Role of Life Cycle Assessment Modelling Within Bioenergy Strategy Development
		20.5.5 Role of Techno-economic Assessment Modelling Within Bioenergy Strategy Development
	20.6 Influence of Policy, Legislation and Social Acceptance on Bioenergy from Waste Projects
		20.6.1 Policy for Bioenergy from Waste Projects in Different Countries
		20.6.2 Gaining Public Acceptance for Energy for Waste Projects
	20.7 Conclusions
	References




نظرات کاربران