دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1
نویسندگان: Jingzheng Ren (editor)
سری:
ISBN (شابک) : 0128163941, 9780128163948
ناشر: Academic Press
سال نشر: 2020
تعداد صفحات: 402
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 15 مگابایت
در صورت تبدیل فایل کتاب Waste-to-Energy: Multi-Criteria Decision Analysis for Sustainability Assessment and Ranking به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب زباله به انرژی: تجزیه و تحلیل تصمیم چند معیاره برای ارزیابی و رتبه بندی پایداری نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
تحلیل پسماند به انرژی: تجزیه و تحلیل تصمیم چند معیاره برای ارزیابی و رتبهبندی پایداری نگاهی جامع از فناوریها و فرآیندهای تولید انرژی به عنوان مسیری برای تصفیه زباله ارائه میدهد و تمام اطلاعات لازم را ارائه میکند. و ابزارهایی برای انتخاب پایدارترین راه حل زباله به انرژی در شرایط مختلف. این کتاب روش هایی مانند ارزیابی چرخه عمر، ارزیابی پایداری، تصمیم گیری چند معیاره و حالت های بهینه سازی چند هدفه را با هم ترکیب می کند. علاوه بر این، یک نمای کلی از مواد اولیه زباله به انرژی، فناوریها و پیادهسازی ارائه میدهد، سپس به بررسی عوامل حیاتی و توانمندسازهای کلیدی که بر توسعه پایدار صنعت زباله به انرژی تأثیر میگذارند، میپردازد.
این کتاب چندین روش تصمیمگیری را برای رتبهبندی و انتخاب سناریوهای اتلاف به انرژی تحت سطوح مختلف اطمینان و در دسترس بودن اطلاعات، از جمله روشهای چند معیاره، چند عاملی و چند ویژگی پیشنهاد میکند. در نهایت، این کتاب از ابزارهای چرخه حیات استفاده می کند که امکان ارزیابی پایداری اقتصادی، زیست محیطی و اجتماعی سیستم های زباله به انرژی را فراهم می کند.
Waste-to-Energy: Multi-criteria Decision Analysis for Sustainability Assessment and Ranking offers a comprehensive view of the technologies and processes for energy generation as a path for waste treatment, presenting all the necessary information and tools for selecting the most sustainable waste-to-energy solution under varying conditions. The book combines methods such as lifecycle assessment, sustainability assessment, multi-criteria decision-making, and multi-objective optimization modes. In addition, it provides an overview of waste-to-energy feedstocks, technologies and implementation, then goes on to investigate the critical factors and key enablers that influence the sustainable development of the waste-to-energy industry.
The book proposes several decision-making methods for the ranking and selection of waste-to-energy scenarios under different levels of certainty and information availability, including multi-criteria, multi-actor and multi-attribute methods. Finally, the book employs lifecycle tools that allow the assessment of economic, environmental and social sustainability of waste-to-energy systems.
Cover WASTE-TO-ENERGY: MULTI-CRITERIA DECISION ANALYSIS FOR SUSTAINABILITY ASSESSMENT AND RANKING Copyright Contents List of contributors 1 An overview of waste-to-energy: feedstocks, technologies and implementations 1.1 Introduction 1.2 Methodology and date sources 1.2.1 Bibliometric analysis and visualization tools 1.2.2 Data sources and processing 1.3 Results 1.3.1 Publication characteristics 1.3.1.1 Primary analyses of the selected publications 1.3.1.2 The most frequently cited articles 1.3.2 The characteristics of different countries/territories 1.3.2.1 The contributions of different countries/territories 1.3.2.2 The contributions of different institutions 1.3.3 Coauthorship analysis 1.3.4 Research hotspots 1.3.4.1 Keywords analysis 1.3.4.2 Research prospects 1.4 Discussion 1.5 Conclusion Acknowledgment References 2 Waste to energy in a circular economy approach for better sustainability: a comprehensive review and SWOT analysis 2.1 Introduction 2.2 Method and data 2.2.1 Method 2.2.2 Data 2.3 Results analysis 2.3.1 The framework of waste to energy in a circular economy 2.3.2 Status of China’s waste management 2.3.3 Reviews and challenges of municipal solid waste management 2.4 Discussion 2.5 Conclusion References 3 Waste-to-wealth by sludge-to-energy: a comprehensive literature reviews 3.1 Introduction 3.2 Biological processes 3.2.1 Anaerobic digestion 3.2.2 Anaerobic fermentation 3.2.3 Microbial fuel cells for electricity production 3.3 Thermochemical processes 3.3.1 Pyrolysis and gasification 3.3.2 Incineration 3.3.3 Combustion 3.3.4 Supercritical water oxidation and supercritical water gasification 3.4 Resources recovery from posttreatment 3.5 Discussion 3.5.1 Summarization of energy and resource recovery from sludge treatment 3.5.2 Comparison and assessment 3.6 Conclusion Acknowledgment References 4 3R for food waste management: fuzzy multi-criteria decision-making for technology selection 4.1 Introduction 4.2 Literature reviews 4.2.1 3R methods for food waste treatment 4.2.2 Basics of multi-criteria decision analysis methods 4.2.3 Research gaps 4.3 Fuzzy multi-criteria decision analysis 4.3.1 Criteria system and decision matrix 4.3.2 Criteria weighting method 4.3.3 Ranking methods 4.3.3.1 Fuzzy technique for order of preference by similarity to ideal solution 4.3.3.2 Fuzzy gray relational analysis 4.4 Case study 4.4.1 Background 4.4.2 Result 4.4.2.1 Fuzzy analytic hierarchy process 4.4.2.2 Fuzzy technique for order of preference by similarity to ideal solution 4.4.2.3 Fuzzy gray relational analysis 4.4.3 Sensitivity analysis 4.5 Discussion and conclusion References 5 Life cycle environmental assessment of thermal waste-to-energy technologies and energy–environment–economy model development 5.1 Pyrolysis, gasification, and incineration waste-to-energy technologies: process overview and potential applications 5.1.1 Pyrolysis and gasification process overview 5.1.2 Potential benefits of pyrolysis and gasification 5.1.3 Pyrolysis and gasification: process configuration of current applications 5.2 Life cycle environmental assessment of pyrolysis, gasification and incineration WtE technologies: theoretical compariso... 5.2.1 System definition 5.2.2 Data source and life cycle inventory 5.2.2.1 Municipal solid waste feedstock characteristics 5.2.2.2 Municipal solid waste pretreatment 5.2.2.3 Thermal conversion 5.2.2.4 Energy utilization cycles 5.2.2.5 Emissions at the stack 5.2.2.6 Ash and air pollution control residues management 5.2.2.7 Life cycle inventory 5.2.3 Life cycle impact assessment 5.2.4 Interpretation of results 5.3 Life cycle environmental assessment of pyrolysis, gasification and incineration WtE technologies: comparisons of four t... 5.3.1 System definition 5.3.2 Life cycle inventory and impact assessment 5.3.3 Interpretation of results 5.4 Life cycle Energy–Environment–Economy assessment model development and application 5.4.1 Conceptual model formulation 5.4.1.1 Life cycle cost is applied for economic assessment 5.4.1.2 Multi-criteria decision-making is implemented to integrate all factors 5.4.2 Mathematical model formulation 5.4.2.1 Life cycle assessment calculation 5.4.2.2 Life cycle cost calculation 5.4.2.3 Multi-criteria decision-making calculation 5.4.2.4 Sensitivity analysis 5.4.3 Case study: application of Energy–Environment–Economy model to compare municipal solid waste treatment technologies 5.4.3.1 System boundaries and functional unit 5.4.3.2 Data source 5.4.3.3 Allocation method 5.4.3.4 Interpretation of results 5.4.3.4.1 Energy analysis results 5.4.3.4.2 Environmental analysis results 5.4.3.4.3 Economic analysis results 5.4.3.4.4 Energy–Environment–Economy analysis results 5.4.3.5 Sensitivity analysis 5.5 Future prospects References 6 Sustainability assessment framework for the prioritization of urban sewage treatment technologies 6.1 Introduction 6.2 Literature review 6.3 Criteria for sustainability assessment of urban sewage treatment 6.4 Methods 6.4.1 Weighting method 6.4.2 Priorities of the alternatives compared to soft criteria 6.4.3 Weighted sum method and sensitivity analysis 6.4.4 TODIM method 6.5 Case study 6.6 Conclusion Acknowledgment References 7 Municipal solid waste to electricity development and future trend in China: a special life cycle assessment case study of... 7.1 Municipal solid waste incineration situation in developed countries 7.1.1 European Union countries 7.1.2 Japan 7.1.3 United States 7.2 Municipal solid waste incineration situation in China 7.2.1 Municipal solid waste incineration in China 7.2.2 Typical provinces and regions 7.2.2.1 Guangdong province 7.2.2.2 Zhejiang province 7.2.2.3 Taiwan 7.2.2.4 Macau 7.2.2.5 Hong Kong 7.2.3 Thermal conversion technology 7.3 Environmental performance of municipal solid waste strategies based on the life cycle assessment method: a case study o... 7.3.1 Macau municipal solid waste incineration 7.3.2 Materials and methods 7.3.2.1 Municipal solid waste management scenarios 7.3.2.1.1 Scenario 0 (current system) 7.3.2.1.2 Scenario 1—landfill only 7.3.2.1.3 Scenario 2—source separation, composting, and landfill 7.3.2.1.4 Scenario 3—incineration and composting 7.3.2.1.5 Scenario 4—source separation and incineration 7.3.2.1.6 Scenario 5—integrated waste management (source separation, composting, and incineration) 7.3.2.2 Life cycle assessment 7.3.2.2.1 Goals, functional unit, and system boundary 7.3.2.2.2 Life cycle inventory 7.3.2.2.3 Allocation 7.3.2.2.4 Life cycle impact assessment and sensitivity analysis 7.3.3 Results and discussion 7.3.3.1 Environmental impacts of the five scenarios 7.3.3.1.1 Scenario 0—current system 7.3.3.1.2 Scenario 1—landfill (prior system) 7.3.3.1.3 Scenario 2—source separation, composting, and landfill 7.3.3.1.4 Scenario 3—incineration and composting 7.3.3.1.5 Scenario 4—source separation and incineration 7.3.3.1.6 Scenario 5—integrated waste management (source separation, composting, and incineration) 7.3.3.1.7 Comparison of scenarios 7.3.3.2 Sensitivity analysis to recycling rates 7.3.4 Discussion 7.4 Conclusion Acknowledgment References 8 Life cycle analysis of waste-to-energy pathways 8.1 Introduction 8.2 Life cycle analysis of waste-to-energy pathways 8.3 Relevant waste-to-energy life cycle analysis studies 8.3.1 Organic waste 8.3.2 Waste plastics 8.3.3 Waste gas 8.4 Conclusion Acknowledgments References 9 Sustainability assessment: focusing on different technologies recovering energy from waste 9.1 Introduction 9.2 Current technologies for waste-to-energy and resources 9.2.1 Thermal/thermochemical technology 9.2.1.1 Incineration 9.2.1.2 Gasification 9.2.1.3 Pyrolysis 9.2.1.4 Liquefaction 9.2.2 Biological technologies 9.2.2.1 Anaerobic digestion 9.2.2.2 Fermentation 9.2.3 Chemical technology 9.2.3.1 Transesterification 9.3 Sustainable assessment methodology 9.3.1 Life cycle sustainability assessment 9.3.1.1 Environmental life cycle assessment 9.3.1.2 Life cycle costing 9.3.1.3 Social life cycle assessment 9.3.2 Life cycle sustainability assessment in waste-to-energy 9.3.3 Environmental life cycle assessment in waste-to-energy technologies 9.3.3.1 In thermal/thermochemical technology 9.3.3.2 In biological technology 9.3.3.3 In chemical technology 9.3.4 Life cycle costing in waste-to-energy technologies 9.3.5 Social life cycle assessment in waste-to-energy technologies 9.4 Conclusion and recommendation Acknowledgments References 10 Multi-criteria decision analysis of waste-to-energy technologies 10.1 Introduction 10.2 Waste-to-energy technologies 10.2.1 Thermochemical technologies 10.2.1.1 Incineration 10.2.1.1.1 Type of feedstock 10.2.1.1.2 Benefits of incinerator 10.2.1.1.3 Drawbacks of incineration 10.2.1.2 Gasification 10.2.1.2.1 Type of feedstock 10.2.1.2.2 Benefits of gasification 10.2.1.2.3 Drawbacks of gasification 10.2.1.3 Pyrolysis 10.2.1.3.1 Type of feedstock 10.2.1.3.2 Benefits of pyrolysis 10.2.1.3.3 Drawbacks of pyrolysis 10.2.1.4 Plasma arc gasification 10.2.1.4.1 Type of feedstock 10.2.1.4.2 Benefits of plasma arc gasification 10.2.1.4.3 Drawbacks of plasma arc gasification 10.2.1.5 Thermal depolymerization 10.2.1.5.1 Type of feedstock 10.2.1.5.2 Benefits of thermal depolymerization 10.2.1.5.3 Drawbacks of thermal depolymerization 10.2.1.6 Hydrothermal carbonization 10.2.1.6.1 Type of feedstock 10.2.1.6.2 Benefits of hydrothermal carbonization 10.2.1.6.3 Drawbacks of hydrothermal carbonization 10.2.2 Biochemical technologies 10.2.2.1 Anaerobic digestion 10.2.2.1.1 Type of feedstock 10.2.2.1.2 Benefits of anaerobic digestion 10.2.2.1.3 Drawbacks of anaerobic digestion 10.2.2.2 Fermentation 10.2.2.2.1 Type of feedstock 10.2.2.2.2 Benefits of fermentation 10.2.2.2.3 Drawbacks of fermentation 10.3 Selection criteria of waste-to-energy technologies 10.3.1 Waste quality and quantity 10.3.2 Economical 10.3.2.1 Capital cost 10.3.2.2 Operation and maintenance cost 10.3.2.3 Revenues from products 10.3.2.4 Land requirement 10.3.2.5 Market prospects of products 10.3.3 Environmental 10.3.3.1 Greenhouse gas emissions 10.3.3.2 Wastewater generation 10.3.3.3 Water consumption 10.3.3.4 Production of nonhazardous solid waste residues 10.3.3.5 Production of hazardous residues 10.3.4 Technical 10.3.4.1 Adaptability to local conditions 10.3.4.2 Flexibility 10.3.4.3 Energy consumption 10.3.4.4 Energy production 10.3.5 Social 10.3.5.1 Social acceptance 10.3.5.2 Risk perception 10.3.5.3 Potential for the creation of new jobs 10.4 Multi-criteria decision-making 10.4.1 Analytical hierarchy process 10.4.1.1 Analytical hierarchy process model development 10.4.1.2 Pairwise comparison matrix and priority vectors 10.4.1.3 Consistency check 10.4.1.4 Synthesis of judgments 10.4.2 Analytical network process 10.4.2.1 Analytical network process network construction 10.4.2.2 Pairwise comparison matrix and priority vectors 10.4.2.3 Supermatrix formation 10.4.2.4 Selection of the best alternatives 10.5 Conclusion References 11 Sustainability prioritization of sludge-to-energy technologies based on an improved DS/AHP method 11.1 Introduction 11.2 Criteria for sustainability assessment 11.3 Improved Dempster–Shafer/analytic hierarchy process method 11.3.1 Gray numbers for uncertainties 11.3.2 Linguistics for uncertainties 11.3.3 Data processing 11.3.4 Improved Dempster–Shafer/analytic hierarchy process method 11.4 Case study 11.5 Conclusion Acknowledgment References 12 Life cycle sustainability prioritization of alternative technologies for food waste to energy: a multi-actor multi-crite... 12.1 Introduction 12.2 Literature reviews 12.3 Group multi-criteria decision-making model 12.3.1 Group best–worst method 12.3.2 Multi-criteria decision-making 12.4 Case study 12.5 Sensitivity analysis and discussions 12.6 Conclusion Acknowledgment References Index Back Cover