دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1
نویسندگان: Hussam Jouhara
سری:
ISBN (شابک) : 3527348565, 9783527348565
ناشر: Wiley-VCH
سال نشر: 2022
تعداد صفحات: 291
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 16 مگابایت
در صورت تبدیل فایل کتاب Waste Heat Recovery in Process Industries به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب بازیابی گرمای زباله در صنایع فرآیندی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Cover Title Page Copyright Contents Preface Chapter 1 Thermodynamic Cycles 1.1 Introduction to Thermodynamic Cycles 1.2 Rankine Cycle 1.2.1 Introduction 1.2.2 Thermodynamic Diagrams 1.2.3 The Carnot Cycle 1.2.4 Ideal and Actual Rankine Cycles 1.2.4.1 Ideal Cycle 1.2.4.2 Superheated Rankine Cycle 1.2.4.3 Actual Rankine Cycle 1.2.4.4 Improvements to the Rankine Cycle 1.2.4.5 Regenerative Rankine Cycles 1.2.4.6 Cogeneration 1.2.5 Other Configurations of the Rankine Cycle 1.2.5.1 Supercritical Rankine Cycles 1.2.5.2 Reverse Rankine Cycles 1.2.6 Rankine Cycles in Power Plants 1.2.6.1 Fossil Fuel Power Plants 1.2.6.2 Nuclear Power Plants 1.2.6.3 Overall Efficiency of a Power Plant 1.2.6.4 Case Studies 1.3 Organic Rankine Cycle 1.3.1 Configurations of ORC 1.3.1.1 Basic ORC Configuration 1.3.1.2 ORC with Preheating 1.3.1.3 Recuperative ORC 1.3.1.4 Recuperative ORC with Preheating 1.3.2 Organic Working Fluids 1.3.3 Organic Working Fluid Selection 1.3.4 Applications of the ORC 1.3.4.1 Waste Heat Recovery 1.4 Kalina Cycle 1.4.1 Cycle Fundamentals 1.4.1.1 Why Use Ammonia–Water Solution in Kalina Cycle? 1.4.2 Advantages and Drawbacks 1.4.2.1 Advantages 1.4.2.2 Drawbacks 1.4.3 Applications of the Kalina Cycle 1.4.3.1 The Different Configurations of the Cycle 1.4.4 Case Studies 1.5 Brayton Cycle 1.5.1 Regenerative Brayton Cycle (Regenerator) 1.5.1.1 Compressor Analysis 1.5.1.2 Turbine Analysis 1.5.1.3 Heat Supplied to the Cycle 1.5.2 Regenerative Brayton Cycle (Reheater and Intercooler) 1.5.2.1 Intercooling 1.5.2.2 Reheating 1.6 Chapter Summary References Chapter 2 Waste Heat Recovery 2.1 Burner and Air Preheaters 2.1.1 Recuperators 2.1.1.1 Recuperative Burners 2.1.1.2 Classifying Recuperative Burners 2.1.1.3 Efficiency Improvement and Fuel Savings 2.1.2 Regenerators 2.1.2.1 Rotary Regenerators 2.1.2.2 Static Regenerators 2.1.2.3 Regenerative Burners 2.1.3 Burner Technology Comparison 2.1.4 NOx Formation 2.1.5 Run‐Around Coil 2.2 Heat Exchangers 2.2.1 Shell and Tube HEXs 2.2.1.1 Construction 2.2.1.2 Applications and Limitations 2.2.2 Plate Heat Exchanger 2.2.2.1 Spiral Plate Heat Exchanger 2.2.3 Heat Pipe Heat Exchanger 2.2.4 Compact HEX 2.3 Waste Heat Boilers 2.3.1 Different WHB Designs 2.3.2 WHB Methodologies 2.3.2.1 Feed Water Preheating Effect 2.3.2.2 Optimising Thermodynamic Cycles 2.3.2.3 Heat Recovery Boiler with Water Spray Systems 2.3.3 Failure Modes 2.3.3.1 Failure Modes Analysis 2.4 Heat Recovery Steam Generators 2.4.1 Construction of Waste HRSG 2.4.1.1 HRSG Design and Construction 2.4.1.2 Evaporator 2.4.1.3 Superheater 2.4.1.4 Economiser 2.4.1.5 Steam Drum 2.4.1.6 Evaporator Types 2.4.1.7 Horizontal Tube HEXs 2.4.1.8 Natural Circulation HRSGs 2.4.1.9 Assisted (or Forced) Circulation HRSGs 2.4.1.10 Tube Materials 2.4.1.11 The ‘Pinch Point’ and Other Effects 2.5 Heat Pumps 2.5.1 Fundamental Principles of Heat Pumps 2.5.1.1 Cooling Mode 2.5.1.2 Heating Mode 2.5.2 Variation of Heat Pump System 2.5.2.1 Air Source Heat Pump System 2.5.2.2 Ground Source Heat Pump System 2.5.2.3 Water Source Heat Pump System 2.5.2.4 Water Loop Heat Pump System 2.5.2.5 Exhaust Air System 2.5.2.6 Hybrid Heat Pump 2.5.2.7 Solar‐Assisted Heat Pumps 2.6 Direct Electrical Conversion Device 2.6.1 TEG – Working Principle 2.6.2 The Seebeck Effect 2.6.3 The Peltier Effect 2.6.3.1 Applications of the Peltier Effect 2.6.4 Thomson Effect 2.6.5 Joule Heating 2.6.6 Theoretical Principle 2.6.7 Figure of Merit 2.6.8 Fermi Level 2.6.9 Nano‐Sizing 2.6.10 Efficiency of TEG 2.7 Thermal Storage 2.7.1 Sensible Heat Storage 2.7.2 Latent Heat Storage 2.7.3 Thermochemical Storage 2.7.4 Phase Change Materials 2.7.5 Organic Material 2.7.6 Inorganic PCMs 2.7.7 Eutectic PCMs 2.7.8 PCM Methodologies 2.7.8.1 Encapsulation of PCMs 2.7.8.2 Microencapsulated PCMs 2.7.8.3 Macroencapsulation of the PCMs 2.7.8.4 Nanomaterial PCMs 2.7.8.5 Shape Stabilisation 2.8 Design Development Methods 2.8.1 Introduction 2.8.2 Heat Exchangers 2.8.2.1 Local Heat Transfer 2.8.2.2 LMTD Method 2.8.2.3 Effectiveness‐Number of Transfer Units (ϵ‐NTU) Method 2.8.3 Regenerative and Recuperative Burners 2.8.3.1 Regenerative Burners 2.8.3.2 Recuperative Burners 2.8.4 Waste Heat Boilers 2.8.5 Air Preheaters 2.8.6 Heat Recovery Steam Generator 2.8.7 Heat Pumps 2.8.8 Direct Electrical Conversion Device 2.8.9 Thermal Storage References Chapter 3 Low‐Temperature Applications 3.1 Refrigeration 3.2 Cryogenics 3.2.1 Loop Heat Pipe 3.3 HVAC References Chapter 4 Medium‐Temperature Applications 4.1 Food Industry 4.1.1 Energy Use in the Industry 4.1.2 Case Study 1: Heat Recovery Potential of the Crisps Manufacturing Process 4.1.3 Case Study 2: Temperature and Energy Performance of Open Refrigerated Display Cabinets Using Heat Pipe Shelves 4.2 Ventilation 4.2.1 Applications 4.3 Solar Energy 4.4 Geothermal Energy 4.5 Automotive Industry 4.5.1 Industrial Processes 4.6 Aviation References Chapter 5 High‐Temperature Applications 5.1 Steel Industry 5.1.1 TEG Modules 5.1.2 Heat Exchangers 5.1.2.1 Application 1: Slag Particles Blast Furnace Retrofit 5.1.2.2 Application 2: Flat Heat Pipe Heat Exchanger 5.1.3 Recuperators 5.1.3.1 Application 1: Heat Recuperator for Steel Slag 5.2 Ceramic Industry 5.2.1 Introduction 5.2.2 Heat Exchangers 5.2.2.1 Application 1: Radiative Heat Pipe 5.2.2.2 Application 2: Multi‐Pass Heat Pipe 5.2.2.3 Application 3: Forced Convection Heat Pipe 5.3 Cement Industry 5.3.1 Gas Suspension Preheaters 5.3.1.1 Application 1 5.3.1.2 Application 2 5.3.2 Heat Pipe Thermoelectric Generator 5.4 Aluminium Industry 5.4.1 Rotary Regenerator 5.4.2 Heat Exchangers 5.4.3 Heat Pumps 5.4.4 Recuperators 5.4.4.1 Radiative Recuperator 5.4.4.2 Convective Recuperator 5.4.4.3 Hybrid Recuperator 5.4.5 Thermoelectric Device 5.4.6 Regenerative Burner 5.4.7 Preheating Scrap 5.4.8 De‐coating References Index EULA