دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: J L Smellie & M G Chapman, J. L. Smellie, Mary G. Chapman سری: Geological Society Special Publication, No. 202) (Geological Society Special Publication, No. 202 ISBN (شابک) : 1862391211, 9781862391215 ناشر: Geological Society of London سال نشر: 2003 تعداد صفحات: 440 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 54 مگابایت
در صورت تبدیل فایل کتاب Volcano-Ice Interaction on Earth and Mars به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب تعامل آتشفشان و یخ در زمین و مریخ نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این جلد بر روی ماگماها و کرایوسفرهای روی زمین و مریخ تمرکز دارد و اولین نشریه در نوع خود است که مجموعه موضوعی مشارکتهایی را با هم ترکیب میکند که به طیف متنوعی از فعل و انفعالات آتشفشان-یخ شناخته شده یا تصور میشود در هر دو سیاره رخ میدهد. درک این فعل و انفعالات یک تلاش علمی نسبتاً جوان است، اما برای درک کامل تر از نحوه عملکرد سیارات به عنوان سیستم های یکپارچه بسیار مهم است. همچنین از آنجایی که فورانهای آتشفشانی آینده روی زمین ممکن است به ذوب شدن صفحات یخ و در نتیجه افزایش سطح جهانی دریاها کمک کند، موضوعی است. مقالات موجود در اینجا احتمالاً بر انتخاب ماموریتهای آینده مریخ در مناطق مهم اگزوبیولوژیکی تأثیر میگذارند. بر روی زمین، برف و یخ نه تنها در کلاهک های یخی وسیع، بلکه به عنوان یخچال های طبیعی آلپ در ارتفاعات بالا در مناطق گرمسیری گسترده است. در مقابل، مریخ امروزی یک سیاره آتشفشانی خشک است که تنها دارای کلاهکهای کوچک یخی قطبی است، گرچه اعتقاد بر این است که آب فراوانی در کرایولیتوسفر به دام افتاده است. همچنین تصور می شود که این سیاره ممکن است در اوایل تاریخ خود اقیانوس های یخ زده گسترده ای را حفظ کرده باشد. بنابراین وجود یک هیدروسفر سابق، یک کرایوسفر و آتشفشان همزمان، مریخ را محتمل ترین چشم انداز برای اولین اکتشافات حیات دور از زمین می کند. بسیاری از تحقیقات فرض کردهاند که سیستمهای آتشفشانی-یخی زمینی مشابه نمونههای احتمالی مریخ هستند، اما تا زمانی که بشر در نهایت پا به مریخ نگذارد، آزمایش سادهای برای این فرض وجود ندارد.
همچنین موجود است:
رسوبگذاری تحت تأثیر یخچالهای طبیعی در حاشیه های قاره ای در
عرض جغرافیایی بالا - ISBN 1862391203
آمار در آتشفشان شناسی - ISBN 1862392080
انجمن زمین شناسی زمین شناسی لندن، انجمن زمین شناسی زمین شناسی لندن تأسیس شد<1807. لندن قدیمیترین انجمن زمینشناسی در جهان و یکی از بزرگترین ناشران در علوم زمین است.
این انجمن طیف وسیعی از عناوین با کیفیت بالا را برای دانشگاهیان و متخصصان فعال در علوم زمین منتشر میکند و از شهرت بین المللی رشک برانگیزی برای کیفیت کارش.
زمینه های متعددی که در آنها منتشر می کنیم عبارتند از:
-زمین شناسی نفت
-تکتونیک، زمین شناسی ساختاری و ژئودینامیک
-چینه نگاری، رسوب شناسی و دیرینه شناسی
-آتشفشان شناسی، مطالعات ماگمایی و ژئوشیمی
- سنجش از دور
-تاریخ زمین شناسی
-راهنماهای زمین شناسی منطقه ای
This volume focuses on magmas and cryospheres on earth and Mars and is the first publication of its kind to combine a thematic set of contributions addressing the diverse range of volcano-ice interactions known or thought to occur on both planets. Understanding those interactions is a comparatively young scientific endeavour, yet it is vitally important for a fuller comprehension of how planets work as integrated systems. It is also topical since future volcanic eruptions on earth may contribute to melting ice sheets and thus to global sea level rise. Papers included here are likely to influence the choice for future Mars missions in exobiologically important areas. On Earth, snow and ice are widespread, not only in extensive ice caps but also as alpine glaciers at high elevations in tropical regions. By contrast, Mars today is an arid volcanic planet with only small polar ice-caps although an abundance of water is believed to be trapped in the cryolithosphere. It is also thought that the planet may have sustained extensive frozen oceans early in its history. The presence of a former hydrosphere, a cryosphere and coincident volcanism thus make Mars the likeliest prospect for the first discoveries of life away from Earth. Much research has assumed that terrestrial volcano-ice systems are plausible analogues for putative Martian examples, but until mankind finally sets foot on Mars, there is no simple test for that assumption.
Also available:
Glacier-Influenced Sedimentation on High-Latitude Continental
Margins - ISBN 1862391203
Statistics in Volcanology - ISBN 1862392080
The Geological Society of London
Founded in 1807, the Geological Society of London is the oldest geological society in the world, and one of the largest publishers in the Earth sciences.
The Society publishes a wide range of high-quality peer-reviewed titles for academics and professionals working in the geosciences, and enjoys an enviable international reputation for the quality of its work.
The many areas in which we publish in include:
-Petroleum geology
-Tectonics, structural geology and geodynamics
-Stratigraphy, sedimentology and paleontology
-Volcanology, magmatic studies and geochemistry
-Remote sensing
-History of geology
-Regional geology guides
Contents......Page 6
Introduction: volcano–ice interaction on Earth and Mars......Page 10
Heat transfer and melting in subglacial basaltic volcanic eruptions: implications for volcanic deposit morphology and meltwater volumes......Page 14
Fig. 1. Geometry of an englacial dyke extending to within a distance .........Page 16
Fig. 2. The pressure, P[sub(t)], in the gas pocket in the tip .........Page 17
Fig. 3. The difference in pressure, P[sub(e)], between the gas in an .........Page 18
Fig. 4. Successive stages in the intrusion of a sill at the .........Page 20
Table 3. Variation with time, t of the extent, E, thickness, d[sub(s)], .........Page 23
Fig. 6. Successive events during and after the intrusion of a sill .........Page 27
Fig. 7. Successive events during and after the intrusion of a sill .........Page 28
Fig. 8. The development of subglacial lava flow structures, (a) Sill reaches .........Page 30
Fig. 10. Diagrammatic representation of key phases of subglacial eruptions. At (1) .........Page 31
Table 2. Examples of the minimum ice thicknesses needed to suppress spontaneous .........Page 21
Table 4. Variation with time, t of the heat flux, q and .........Page 32
Mars: a review and synthesis of general environments and geological settings of magma–H[sub(2)]O interactions......Page 36
Fig. 1. (a) Environments of water and ice on the surface and in .........Page 37
Fig. 3. Near-surface magma interactions. Magma-filled cracks (dykes) propagating from an overpressurized .........Page 39
Fig. 4. Magma and cryosphere–water interactions. Dykes propagating to the surface can .........Page 40
Fig. 5. The range of eruption styles seen or predicted on Mars. .........Page 41
Fig. 6. Generalized configuration of the crust of Mars indicating the basic .........Page 42
Fig. 7. Block diagram illustrating schematic relationships between ascending magma and the .........Page 43
Fig. 8. Schematic diagram of a 30 km-diameter pluton intruded at a neutral .........Page 47
Fig. 9. Slump deposits on the western flanks of Arsia Mons. (a) MOLA .........Page 48
Fig. 10. Memnonia Fossae and Mangala Valles, showing the interpreted relation of .........Page 49
Fig. 11. Elysium Fossae, channels and Amazonian flow deposits, showing the interpreted .........Page 51
Fig. 12. Interaction of a sill intrusion to produce melting, chaos formation .........Page 52
Fig. 13. Relationship between magma placement and effects for flows and sills. .........Page 54
Fig. 14. Cluster of cones north of the Cerberus plains, Eastern Elysium. .........Page 55
Fig. 15. Candidate sub-ice-sheet volcanoes or tuyas in the Hesperian Dorsa Argentea .........Page 57
Fig. 16. Candidate hyaloclastite ridges on Mars in Utopia Planitia interpreted to .........Page 60
The 1969 subglacial eruption on Deception Island (Antarctica): events and processes during an eruption beneath a thin glacier and implications for volcanic hazards......Page 68
Fig. 1. Maps showing (a) the location of Deception Island, and (b) localities .........Page 69
Fig. 2. Sketch map of the Mount Pond glacier showing the positions .........Page 71
Fig. 3. Aerial photographs of the Mount Pond glacier, taken in March .........Page 72
Fig. 4. View of the abandoned Chilean station at Pendulum Cove. The .........Page 74
Fig. 5. View looking SE up fissure F. The fissure floor is .........Page 75
Fig. 7. Panorama looking east toward fissure C showing the sub-vertical ice .........Page 76
Fig. 9. Panorama showing coalesced sediment fans formed mainly during the period .........Page 77
Fig. 10. Series of cartoons illustrating the interpreted eruptive history at Mount .........Page 84
A brief overview of eruptions from ice-covered and ice-capped volcanic systems in Iceland during the past 11 centuries: frequency, periodicity and implications......Page 90
Fig. 1. Map of Iceland, showing the Quaternary volcanic zones (<0.7 Ma in .........Page 91
Fig. 2. Map of SE Iceland, showing the five partly ice-covered and .........Page 92
Fig. 3. Map showing the tephra sector (basaltic tephra, in grey) of .........Page 93
Fig. 4. A 1986 aerial photograph showing the ablation area and glacier .........Page 95
Fig. 5. Diagram showing the frequency of eruptions within Vatnajökull ice cap, .........Page 97
Table 1. Historical eruptions from partly ice-covered and ice-capped volcanic systems......Page 96
Basaltic pahoehoe lava-fed deltas: large-scale characteristics, clast generation, emplacement processes and environmental discrimination......Page 100
Fig. 1. Maps showing the location of the James Ross Island area, .........Page 101
Fig. 2. Sketch section and photo-interpretation of lava-fed deltas in the Stark .........Page 102
Fig. 3. Sketch section and photo-interpretation of lava-fed deltas on the north .........Page 104
Fig. 4. Illustration of large-scale features (a & b) and facies of .........Page 106
Fig. 5. Foreset-bedded sequences without prominent truncation surfaces (a) and with truncation .........Page 107
Fig. 6. (a) Conceptual depiction of the variety of clast generation and emplacement .........Page 109
Fig. 7. Characteristics which may be used to distinguish marine and englacial .........Page 110
Fig. 8. Primary morphologies and post-depositional modification of subaqueous coherent lava lobes .........Page 111
Table 1. Codes, descriptions and interpretation of the lithofacies of JRIVG lava-fed .........Page 113
Table 2. Key to clast-generation and emplacement processes illustrated in Figure 6a......Page 115
Architecture and evolution of hydrovolcanic deltas in Marie Byrd Land, Antarctica......Page 124
Fig. 2. Aerial view looking east to the late Miocene (8.3 Ma) .........Page 126
Fig. 3. Mount Takahe, a late Quaternary (<300 ka) trachytic shield volcano, viewed .........Page 127
Fig. 4. View looking east to the Möll Spur hydrovolcanic delta, showing .........Page 129
Fig. 5. Foreset bedded trachyte pillow lavas at Möll Spur, directly down-dip .........Page 130
Fig. 7. Subaerial to hydrovolcanic facies transition at Gill Bluff. (a) Subhorizontal .........Page 131
Fig. 8. Isolated pillow in trachytic hyaloclastite at the base of the .........Page 132
Fig. 9. (a) Basaltic hydrovolcanic basal unit (LeMasurier et al. 1994) at Mount .........Page 133
Fig. 9. (b) View to the left of (a), showing a closer view .........Page 134
Fig. 9. (c) Nested pillow lavas at the centre of (a).......Page 135
Fig. 10. Photomicrographs of hyaloclastites from MBL hydrovolcanic deltas. The scale of .........Page 136
Table 2. Densities and porosities of selected hyaloclastite samples from Marie Byrd Land*......Page 140
Fig. 12. View of a pillowed basaltic sill or dyke intruded into .........Page 141
Fig. 13. (a) Irregularly shaped dykes and sills on the left and right .........Page 143
Fig. 14. (a) A tabular dyke of coarse-grained, basaltic hyaloclastite breccia (upper right), .........Page 146
Fig. 15. Multiple, normally graded, basaltic mass flow deposits, Stauffer Bluff, Mount .........Page 147
Fig. 17. Hyaloclastite with deformed bedding cross-cutting massive-looking hyaloclastite. Stratification is also .........Page 148
Fig. 18. Pervasively faulted pillow lava/hyaloclastite complex at Möll Spur. (a) Two .........Page 149
Fig. 19. Photomicrographs of hyaloclastites associated with wholly subaqueous pillow lavas. The .........Page 151
Table 1. Modal analyses of hyaloclastites, in percent, based on 500 counts. .........Page 139
Facies analysis of proximal subglacial and proglacial volcaniclastic successions at the Eyjafjallajökull central volcano, southern Iceland......Page 158
Fig. 1. Simplified map of the Eyjafjallajökull volcano (after Jonsson 1988) showing .........Page 159
Fig. 2. Hydroclast morphologies represented in redeposited volcaniclastic deposits at the Eyjafjallajökull .........Page 164
Fig. 3. Schematic vertical profile diagrams illustrating the nine common proximal lithofacies .........Page 165
Fig. 4. Outline map of the Eyjafjallajökull volcano showing the general distribution .........Page 167
Fig. 5. East–west sections throught proximal deposits showing an abundance of angular .........Page 168
Fig. 6. Simplified sketch (not to scale) of the relationships between units .........Page 169
Fig. 7. Looking east at a vertical stack of lithofacies association A .........Page 170
Fig. 9. Looking north at lithofacies association C at Varmahlið [623 478], .........Page 171
Fig. 11. Looking west at lithofacies association F near Seljaland [509 546]. .........Page 172
Fig. 12. Looking north, at lithofacies association H at Seljavellir [685 494] .........Page 173
Fig. 13. Looking SE down Kaldaklifsgil gorge, west of Skógaheiði. Lithofacies association .........Page 180
Table 1. Summary descriptions and interpretations of lithofacies examined on Eyjafjallajökull volcano.......Page 161
Table 2. Summary descriptions and interpretations of the nine proximal lithofacies associations .........Page 174
Glacial influences on morphology and eruptive products of Hoodoo Mountain volcano, Canada......Page 188
Fig. 1. Map showing the location of Hoodoo Mountain volcano (H). It .........Page 189
Fig. 2. Geology and physiography of Hoodoo Mountain volcano. (a) Geological map .........Page 191
Fig. 3. Field photographs showing the character of the lower and upper .........Page 192
Fig. 4. Photographs of non-vesiculated lava flows, domes and associated breccias (see .........Page 193
Fig. 5. Field photographs showing features of dykes that feed highly vesiculated .........Page 194
Fig. 6. Photographs of vesiculated lava and palagonitized hyaloclastite deposits on the .........Page 196
Fig. 7. Three dimensional triangulated network views of Hoodoo Mountain volcano showing .........Page 199
Fig. 8. Cartoon illustrating styles of volcanism that may have produced the .........Page 200
Table 1. Summary descriptions and interpretations of associations at HMV......Page 198
Effusive intermediate glaciovolcanism in the Garibaldi Volcanic Belt, southwestern British Columbia, Canada......Page 204
Fig. 1. (a) Map of the Garibaldi Volcanic Belt, showing the distribution of .........Page 205
Fig. 2. Chemical classification of volcanic rocks from the Garibaldi Volcanic Belt. .........Page 207
Table 2. Summary and description of glaciovolcanic features in the Garibaldi Volcanic Belt......Page 208
Fig. 4. Glaciovolcanic features in the Garibaldi Volcanic Belt. (a) The Table, .........Page 209
Fig. 6. Model values of heat that would be released by eruption .........Page 215
Table 1. Quaternary volcanic centres of the Garibaldi Volcanic Belt......Page 206
Table 3. Compositions of lavas from Garibaldi volcanic belt and Iceland used .........Page 213
Table 4. Physical constants used in calculation of heat budgets attending cooling .........Page 214
Physical volcanology of a subglacial-to-emergent rhyolitic tuya at Rauðufossafjöll, Torfajökull, Iceland......Page 222
Fig. 1. (a) Map showing the location of Torfajökull central volcano in south-central .........Page 224
Fig. 2. Simplified solid and drift geological map of SE Rauðufossafjöll, indicating .........Page 226
Fig. 4 (a) SEM image of rhyolite ash shards from the base of .........Page 227
Fig. 5. (a) View of the southern part of the west flank of .........Page 228
Fig. 5. (c) Detail at X on Fig. 5b. View shows the oxidized, .........Page 230
Fig. 6. (a) View of SE Rauðufossafjöll from the NE. Lava C forms .........Page 231
Fig. 7. (a) Close-up view of the peperitic base of lava D at .........Page 233
Fig. 8. Geological map of the eastern plateau, showing the detailed structure .........Page 234
Fig. 9. (a) View of the northwestern outcrop of lava E on the .........Page 236
Fig. 10. Cartoons illustrating a possible model for the emplacement of lava .........Page 237
Fig. 11. (a) View of Blautakvísl gully, looking NW. Volcaniclastic sediments (v) extend .........Page 238
Fig. 12. Cartoons illustrating the possible evolution of SE Rauðufossafjöll. See text .........Page 241
Table 1b. Important differences between rhyolitic and basaltic subglacial eruptions (after Tuffen et al. 2001)......Page 223
Table 2. Summary characteristics of volcaniclastic sediments in Blautakvísl gully......Page 240
Table 3. Differences between basaltic and rhyolitic tuyas......Page 243
Lithofacies analysis and [sup(40)]Ar/[sup(39)]Ar geochronology of ice–volcano interactions at Mt. Murphy and the Crary Mountains, Marie Byrd Land, Antarctica......Page 246
Fig. 1. Map of Marie Byrd Land, West Antarctica (base map from .........Page 247
Fig. 2. Topographic map of Mt. Murphy volcano showing rock exposures described .........Page 253
Fig. 3. Composite lithostratigraphic section west of Bucher Peak, Mt. Murphy, including .........Page 256
Fig. 4. Topographic and rock outcrop map and [sup(40)]Ar/[sup(39)]Ar chronology of Crary .........Page 257
Fig. 5. Sketch (a) and photograph (b) of Trabucco Cliff outcrops at .........Page 258
Fig. 6. Stratigraphic section of Tasch Ridge, Mt. Rees, Crary Mountains, showing .........Page 259
Fig. 7. Views of alternating \'wet\' subaqueous and \'dry\' subaerial volcanic lithofacies .........Page 260
Table 1. [sup(40)]Ar/[sup(39)]Ar furnace step-heating and laser-fusion results......Page 249
Volatiles in basaltic glasses from a subglacial volcano in northern British Columbia (Canada): implications for ice sheet thickness and mantle volatiles......Page 264
Fig. 1. Map of the NE Pacific region showing the location of .........Page 265
Fig. 2. Map showing the distribution of quaternary basaltic volcanic centres in .........Page 266
Fig. 3. Topographic map of Tanzilla Mountain showing locations of analysed samples.......Page 267
Fig. 4. Photographs of Tanzilla Mountain volcanic rocks. (A) Large coherent pillows .........Page 268
Fig. 5. (a) Total alkalis v. SiO[sub(2)] diagram for Tanzilla Mountain (this study) .........Page 269
Fig. 7. Variation of total alkalis with elevation for Tanzilla Mountain (this .........Page 270
Fig. 8. Diagrams showing variation of (A) H[sub(2)]O, (B) S and (C) Cl .........Page 275
Fig. 9. (A) H[sub(2)]O v. K[sub(2)]O for Tanzilla Mountain (this study), Ash Mountain .........Page 276
Fig. 10. Diagram showing calculated ice thickness v. elevation. Ice thicknesses calculated .........Page 277
Table 1. Major, minor and volatile element compositions for glasses from Tanzilla .........Page 271
Table 2. Trace elements in Tanzilla Mountain whole-rock samples......Page 274
Layered, massive and thin sediments on Mars: possible Late Noachian to Early Amazonian tephra?......Page 282
Fig. 1. Plotted locations of layered, massive and thin mesa outcrops in .........Page 283
Fig. 2. Plotted locations of layered, massive and thin mesa outcrops in .........Page 284
Fig. 4. Part of Viking Orbiter 897A40 (159 m/pixel) showing largest Gangis chasma .........Page 286
Fig. 7. Part of MOC M0804332 (2.86 m per pixel, 1.46 km wide) showing .........Page 287
Fig. 8. Part of mound in Melas Chasma (at about lat. 13.2°S., .........Page 288
Fig. 9. (a) Part of Viking Orbiter image 915A22 (40 m per pixel; centered .........Page 289
Fig. 10. Oblique views of (a) a relief map of the Jemez .........Page 291
Fig. 11. Schematic geological cross section along MOLA profile A–B; from central .........Page 292
Fig. 12. Part of Viking Orbiter image 906A06 (72.5 m per pixel; centered .........Page 293
Fig. 13. (a) MOC AB106306 (4.52 m per pixel, 4.62 km wide) showing relatively bright .........Page 294
Fig. 15. Mosaic of MOC images 304405 and 401737 (about 5.7 m per pixel .........Page 295
Fig. 16. Flank of two Valles Marineris mounds showing lobes that terminate .........Page 296
Fig. 18. Part of MOC M1003164 (2.86 m per pixel, 2.92 km wide) showing .........Page 297
Fig. 19. Part of MOC M0806284 (2.86 m per pixel, 1.46 km wide) showing .........Page 298
Fig. 20. MOLA topographic view of impact crater Gale (at about latitude .........Page 299
Rootless cones on Mars: a consequence of lava–ground ice interaction......Page 304
Fig. 1. Icelandic rootless cones. (a) Rootless cones at Lake Myvatn have .........Page 306
Fig. 2. Histograms of the ratio of crater diameter to cone diameter .........Page 307
Fig. 3. Generalized interpretation of explosive intensity based on different cone morphologies.......Page 308
Fig. 4. Map showing locations of candidate martian rootless cones. Open boxes .........Page 309
Fig. 5. Viking Orbiter image 038A11 (48 m per pixel) located in eastern .........Page 310
Fig. 6. MOC images of candidate rootless cones. Scene is illuminated from .........Page 311
Fig. 8. Histograms of the ratio of crater diameter to cone diameter .........Page 316
Fig. 9. Diagram depicting stages of rootless cone formation.......Page 319
Table 2. Summary of model results......Page 321
Table 1. Ranges of values taken by model parameters......Page 320
The hyaloclastite ridge formed in the subglacial 1996 eruption in Gjálp, Vatnajökull, Iceland: present day shape and future preservation......Page 328
Fig. 1. (a) Map of Vatnajökull and its surroundings, including the ice cap .........Page 329
Fig. 2. Maps showing the development of ice cauldrons during and shortly .........Page 331
Fig. 3. (a) View (looking east) of the Gjálp ridge as seen from .........Page 333
Fig. 4. Map showing the location of radio echo sounding lines used .........Page 334
Fig. 5. (a) Map of pre-eruption bedrock topography in the Gjálp area, after .........Page 335
Fig. 6. Five of the radio echo survey lines used to define .........Page 336
Fig. 7. Forward gravity models of the Gjálp ridge. The location of .........Page 337
Fig. 8. Cross-sections of Gjálp based on direct observations, radio echo and .........Page 338
Fig. 10. Maps comparing the morphologies of the Gjálp ridge and the .........Page 339
Fig. 11. Section through Grímsvötn and Gjálp (see Fig. 5b for location). .........Page 340
Fig. 12. Maps showing changes in the ice flow field in the .........Page 342
Subglacial volcanic features beneath the West Antarctic Ice Sheet interpreted from aeromagnetic and radar ice sounding......Page 346
Fig. 1. Generalized isostatically compensated (after ice removal) bedrock elevation map of .........Page 347
Fig. 2. Central west Antarctica aeromagnetic anomaly map (after Sweeney et al. .........Page 348
Fig. 3. Photograph of approximately 2 km-diameter ice surface depression marking subglacial melting caused .........Page 349
Fig. 4. Shaded aeromagnetic map of northernmost area of Figure 2 marked .........Page 351
Fig. 5. Bedrock elevation map compiled from radar ice sounding of area .........Page 352
Fig. 6. (a) Detailed aeromagnetic map of area of anomaly A (located in .........Page 354
Fig. 7. Aeromagnetic (a) and bedrock elevation (b) maps of area of .........Page 355
Fig. 8. Aeromagnetic (a) and bedrock elevation (b) maps of area of .........Page 356
Fig. 9. Aerial view of glacially smoothed hyaloclastite ridges in Iceland with .........Page 357
Fig. 10. Aeromagnetic (a) and bedrock elevation (b) maps of area of .........Page 358
Fig. 11. Theoretical two ½-D model fit to aeromagnetic profile for anomaly .........Page 359
Fig. 12. Aerial view of Mt. Melbourne looking to northwest (Fig. 1). The subaerially .........Page 360
Fig. 13. View of Skridutindar, a steep Pleistocene hyaloclastite ridge north of .........Page 362
Spectroscopic and geochemical analyses of ferrihydrite from springs in Iceland and applications to Mars......Page 366
Fig. 1. Images of sample collection sites at Landmannalaugar for the hot .........Page 367
Fig. 2. X-ray diffraction curves for Icelandic ferrihydrites collected at Landmannalaugar. Both .........Page 369
Fig. 3. Reflectance spectra from 0.4 to 2.5 μm of the Icelandic springs .........Page 371
Fig. 4. Spectra of the Icelandic springs ferrihydrite (498, 499) and synthetic .........Page 373
Fig. 7. Transmittance spectra from 400 to 2000 cm[sup(-1)] of Icelandic ferrihydrites and .........Page 374
Table 1. Major elements for Icelandic springs samples......Page 368
Table 2. Spectral features for natural and synthetic ferrihydrites......Page 372
Geochemical and mineralogical analyses of palagonitic tuffs and altered rinds of pillow basalts in Iceland and applications to Mars......Page 380
Fig. 1. Map indicating locations of sample collection sites: (a) Iceland, and .........Page 381
Fig. 2. Images of the sample collection sites: (a) Thórólfsfell ridge, (b) palagonitic .........Page 382
Fig. 3. BSE images of palagonitic tuff material from Thórólfsfell ridge. An .........Page 386
Fig. 4. BSE images of alteration rinds of pillow basalts from Hlöðufell .........Page 387
Table 3. Elemental composition of oxalate and dithionite selective dissolution extracts of .........Page 389
Fig. 7. Complementary BSE images and Cs–Lα X-ray dot maps are shown .........Page 390
Fig. 9. Reflectance spectra from 2000 to 400 cm[sup(-1)] (5–25 μm) of the Icelandic .........Page 391
Fig. 10. Reflectance spectra from 0.3 to 3.3 μm of the Icelandic tuff .........Page 392
Fig. 11. Reflectance spectra from 2000 to 400 cm[sup(-1)] (5–25 μm) of the Icelandic .........Page 393
Fig. 12. Normalized reflectance spectra from 5500 to 4200 cm[sup(-1)] (c. 1.8–2.4 μm): (a) smectites: .........Page 395
Fig. 13. Extended visible region spectra of Icelandic samples compared to IMP .........Page 396
Table 1. Major elements for Thórólfsfell ridge and Hlöðufell tuya samples......Page 385
Table 2. Molar abundances of major elements for Thórólfsfell ridge and Hlöðufell tuya samples......Page 388
Distinguishing palagonitized from pedogenically-altered basaltic Hawaiian tephra: mineralogical and geochemical criteria......Page 402
Fig. 1. Map showing the location of the four Keanakako\'i Ash tephra .........Page 404
Fig. 2. Back-scattered electron images comparing consolidated and unconsolidated, altered tephras: (a) fresh .........Page 405
Fig. 3. X-ray diffraction traces of the <2 μm size fraction of representative .........Page 406
Fig. 6. NewMod model (dashed line) of Ca- and ethylene glycol-saturated <2 mm .........Page 407
Table 2. Electron microprobe analyses of Keanakako \'i and JSC Mars-1 glass and their alteration products......Page 409
Fig. 8. Near- (top panel) and mid- (bottom panel) infrared reflectance spectra .........Page 410
Fig. 10. Reflectance spectra of palagonitized Kilauea samples 116-03 (offset +0.05) and .........Page 411
Table 1. Composition of oxalate (o) and dithionite (d) selective dissolution extracts .........Page 408
Identifying bio-interaction with basaltic glass in oceanic crust and implications for estimating the depth of the oceanic biosphere: a review......Page 416
Fig. 1. SEM images showing various stages in the development of granular .........Page 418
Fig. 2. Typical granular texture viewed through an optical microscope. (a) Granular .........Page 419
Fig. 3. Optical photomicrographs of tubular texture (TT) of assumed bio-generated origin. .........Page 420
Fig. 5. SEM images of organic-like remains (biofilm and filaments) (F) within .........Page 421
Fig. 6. Photomicrographs of an alteration front of the granular type (GT) .........Page 422
Fig. 7. SEM image (a) and X-ray maps showing the distribution of .........Page 423
Fig. 8. Distribution of δ[sup(13)]C in glassy and crystalline pillow lavas from .........Page 425
Fig. 9. Sketch indicating the opposite δ[sup(13)]C paths generated by different microbial .........Page 426
Fig. 10. Estimated percentage biotic alteration to total (biotic+abiotic) alteration relative to .........Page 427
C......Page 432
F......Page 433
H......Page 434
L......Page 435
M......Page 436
P......Page 437
S......Page 438
W......Page 439
Z......Page 440