دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [1st ed. 2023] نویسندگان: Danielle Albers Szafir (editor), Rita Borgo (editor), Min Chen (editor), Darren J. Edwards (editor), Brian Fisher (editor), Lace Padilla (editor) سری: ISBN (شابک) : 3031347374, 9783031347375 ناشر: Springer سال نشر: 2023 تعداد صفحات: 411 [403] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 11 Mb
در صورت تبدیل فایل کتاب Visualization Psychology به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب روانشناسی تجسم نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Foreword Preface Contents Contributors Part I Visualization Psychology from a Psychology Perspective 1 Color Semantics for Visual Communication 1.1 Introduction 1.1.1 Visual Semantics from Multiple Perspectives 1.1.2 Chapter Overview 1.2 Color Semantics for Categorical Information 1.2.1 Color–Concept Associations vs. Inferred Mappings 1.2.1.1 Color–Concept Associations 1.2.1.2 Inferred Mappings 1.2.2 Assignment Inference 1.2.3 Semantic Discriminability 1.2.4 Assignment Inference for Abstract Concepts? 1.2.5 Semantic Discriminability Theory 1.2.6 Summary and Open Questions for Visualizations of Categorical Information 1.3 Color Semantics for Continuous Data 1.3.1 Relational Associations for Colormaps 1.3.1.1 Structure Preservation 1.3.1.2 Dark-is-More Bias 1.3.1.3 Opaque-is-More Bias 1.3.1.4 Hotspot-is-More Bias 1.3.1.5 High-is-More Bias 1.3.2 Assignment Inference for Visualizations of Continuous Data 1.3.3 Summary and Open Questions for Visualizations of Continuous Data 1.4 Conclusion References 2 Theories and Models in Graph Comprehension 2.1 Introduction 2.1.1 What Kind of Graph Is a Graph? 2.2 An Abridged History of Theory in Graph Comprehension 2.2.1 A Semiology of Graphics: Bertin 2.2.2 Elementary Structures in Graphical Perception: From Cleveland and McGill to Simkin and Hastie 2.2.3 The Rise of Process Theories 2.2.3.1 A Theory of Graph Comprehension: Steven Pinker 2.2.3.2 A Construction-Integration Model: Shah and Colleagues 2.3 The Landscape of Contemporary Research 2.4 What Remains to Be Discovered References 3 Mental Models and Visualization 3.1 Introduction 3.2 Internal Representations 3.2.1 Distributed Cognition 3.2.2 Mental Models 3.3 Designing Visualizations from a Mental Models Perspective 3.3.1 Supporting the Initial Construction of Mental Models 3.3.1.1 Structural Construction Support: Advance Organizer 3.3.1.2 Behavioral Construction Support: Onboarding Techniques 3.3.2 Supporting the Integration of Information from Multiple Views 3.3.2.1 Synchronous Integration: Coordination and Linkage of Views 3.3.2.2 Sequential Integration: Narration, Storytelling, and Seamless Transitions 3.4 Discussion 3.4.1 Macro Models 3.4.2 Model Quality, Stability, and Depth of Internalization 3.4.3 Advancement of Story Models 3.4.4 Modality 3.4.5 Sharing Mental Models References 4 Improving Evaluation Using Visualization Decision-Making Models: A Practical Guide 4.1 Introduction 4.1.1 Evaluation Methods for Decision-Making 4.2 The Science of Making Decisions 4.3 The Utility-Optimal Perspective 4.3.1 Using Utility-Optimality to Evaluate visualizations 4.3.1.1 A Fantasy Football Study 4.3.1.2 A Classic Lottery Game 4.3.2 Outlook on Using Utility-Optimal Theories for Visualization Evaluation 4.4 The Dual-Process Perspective 4.4.1 Dual-Process in Decision-Making 4.4.2 Dual-Processes and Visualization Evaluation 4.4.3 Outlook on Using the Dual-Processing Approach for Visualization Evaluation 4.5 Cognitive Models of Decision-Making with Visualization 4.5.1 Padilla's Dual-Process Model and the Importance of Working Memory 4.5.2 Outlook on Using Cognitive Models in Visualization 4.6 Conclusion References 5 Supporting Diverse Research Methods for Observing Huge Variable Space in Empirical Studies for Visualization 5.1 Introduction 5.2 Observations 5.2.1 More Experimental Scientists 5.2.2 More Studies on the ``Mind'' 5.2.3 Progressive Approaches 5.3 The Diversity of Publications in Studying the ``Mind'' 5.3.1 The Types of Empirical Research Papers in Visualization 5.3.2 A Survey of Paper Types in Psychology Journals 5.3.3 A High-level Categorization 5.3.4 Further Categorization of ``Articles'' 5.3.5 Further Categorization of ``Commentaries and Responses'' 5.3.6 Further Categorization of ``Reviews'' 5.3.7 Further Categorization of ``Reports'' 5.3.8 Further Categorization of ``Others'' 5.3.9 Observations and Discussions 5.4 Conclusions References Part II Visualization Psychology from a Visualization Perspective 6 Visualization Onboarding Grounded in Educational Theories 6.1 Introduction 6.2 Related Work 6.2.1 Visualization Onboarding 6.2.2 Educational Theories in Visualization and Cognitive Science 6.2.3 Knowledge Integration for Onboarding 6.3 Descriptive Design Space 6.3.1 Construction of Design Space 6.3.2 Design Space Dimensions 6.3.2.1 WHO Is the User? 6.3.2.2 HOW Is Visualization Onboarding Provided? 6.3.3 WHERE is Visualization Onboarding Provided? 6.3.4 WHEN Is Visualization Onboarding Used? 6.4 Survey on Visualization Onboarding 6.4.1 Method 6.4.2 Results 6.4.2.1 WHO: Who Is the User? Which Knowledge Gap Does the User Have? 6.4.2.2 HOW: How Is Visualization Onboarding Provided? 6.4.2.3 WHERE: Where Is Visualization Onboarding Provided? 6.4.2.4 WHEN: When Is Visualization Onboarding Used? 6.4.3 Summary 6.4.4 Existing Design Considerations for Visualization Onboarding 6.5 Discussion and Conclusion References 7 Adaptive Visualization of Health Information Based on Cognitive Psychology: Scenarios, Concepts, and Research Opportunities 7.1 From Static to Adaptive Visual Health Information Systems 7.1.1 Interactive Data Visualization for Health Data Visualization 7.1.2 Evidence-Based Consumer Health Information as Information Basis 7.1.3 Cognitive Psychology Principles for Adaptive Health Information 7.2 Scenario: Adapting Health Information for Diabetes Type II 7.2.1 Consumer Health Information System Scenario 1 7.2.2 Consumer Health Information System Scenario 2 7.3 Visual Health Information and Visual Analytics for Healthcare 7.3.1 Previous Work 7.3.1.1 Interactive Data Visualization and Health Data Visualization 7.3.1.2 Visual Abstractions and Visual Literacy 7.3.1.3 Adaptive Visualization for General and Medical Data 7.3.1.4 Knowledge Technologies and Medical Health Information 7.3.2 Research Challenges 7.4 Evidence-Based Health Information and Systems 7.4.1 Previous Work 7.4.1.1 Health Literacy 7.4.1.2 Consumer Health Information Systems 7.4.1.3 Quality of CHIS 7.4.2 Research Challenges 7.5 Cognitive Psychology of Health Information 7.5.1 Previous Work 7.5.1.1 Knowledge Representation 7.5.1.2 Adaptive Assessment 7.5.1.3 Interactivity 7.5.1.4 Identification and Mitigation of Cognitive Biases 7.5.1.5 Instructional Design 7.5.1.6 Evaluation of Adaptive Systems 7.5.2 Research Challenges 7.6 Architecture and Machine Learning Methods for an Adaptive Visual Consumer Health Information System 7.6.1 Overview of Proposed Architectures 7.6.2 Machine Learning Approaches for Adaptation 7.6.2.1 Main Methods and Application Possibilities in an Adaptive CHIS 7.6.2.2 Discussion of Machine Learning Approaches 7.7 Conclusion References 8 Design Cognition in Data Visualization 8.1 Introduction 8.1.1 Why Study Visualization Design Cognition? 8.1.2 Methods for Studying Design Cognition 8.2 Two Paradigms of Design Cognition 8.2.1 Design as Rational Problem Solving 8.2.2 Design as Reflective Practice 8.3 Attempts at Integration 8.3.1 Philosophical Considerations 8.4 Implications for Data Visualization 8.4.1 Defining Design for Data Visualization 8.4.2 Automated Visualization Design 8.4.3 Visualization Design Models and Frameworks 8.4.4 Visualization Education 8.5 Summary References 9 Visualization Psychology: Foundations for an Interdisciplinary Research Program 9.1 Introduction 9.2 Why Visualization Needs Psychology 9.3 Elements of a Framework 9.3.1 Visualization is External Representation 9.3.1.1 On Visualization 9.3.1.2 On External Representation 9.3.2 Meaning Is Constructed 9.3.3 Information Is Processed 9.3.4 Cognition Is Distributed 9.4 On Doing Visualization Psychology 9.5 The History and Future of Visualization Psychology References 10 Visualization Psychology for Eye Tracking Evaluation 10.1 Introduction 10.2 Study Designs 10.2.1 Controlled Experiments 10.2.2 In-the-Wild Studies 10.2.3 Bridging Between Quantitative and Qualitative Research 10.3 Explainability of Observations 10.4 Cognitive Architectures 10.5 Example Scenarios 10.5.1 Overview of Scenarios 10.5.2 Potential Extensions 10.6 Call for Actions References Part III Visualization Psychology from an Experimental Perspective 11 Task Matters When Scanning Data Visualizations 11.1 Introduction 11.2 An Experiment on the Impact of Task 11.2.1 Materials 11.2.2 Procedure 11.3 Results 11.4 Discussion References 12 Perceptual Biases in Scatterplot Interpretation 12.1 Introduction 12.2 Bottom-Up and Top-Down Attention in Data Visualizations 12.3 Expanding the Effectiveness of Saliency Models as a Visualization Evaluation Tool 12.4 Visual–Spatial Biases with Scatterplots 12.5 Experiment: Interpretation of Clusters in a Scatterplot 12.6 Experiment: Method 12.6.1 Participants 12.6.2 Design 12.6.3 Materials 12.6.4 Procedure 12.7 Experiment: Results 12.8 Cluster Membership Task: Behavioral Results 12.8.1 Density 12.8.2 Dispersion 12.8.3 Nearest Neighbor 12.9 Cluster Height Task: Behavioral Results 12.9.1 Density 12.9.2 Dispersion 12.9.3 Highest Point 12.9.4 Eye Movement Results 12.10 Experiment: Discussion References 13 Leveraging Conscientiousness-Based Preferences in Information Visualization Design 13.1 Introduction 13.2 Fundamentals of Personality Psychology 13.3 Related Work 13.4 Methodology Overview 13.5 Assessment of Personality and Design Preferences 13.5.1 Data Collection 13.5.2 Data Analysis 13.5.2.1 Clustering Personality Variables 13.5.2.2 Extracting Association Rules 13.5.2.3 Finding Preferences for Clusters 13.6 Evaluation 13.6.1 Visualizations 13.6.2 Tasks 13.6.3 Measures 13.6.4 Expected Findings 13.6.5 Procedure 13.6.6 Data Analysis 13.7 Results 13.7.1 Performance Metrics 13.7.2 Self-assessment Metrics 13.7.3 Discussion 13.7.3.1 Research Implications 13.7.3.2 Limitations and Future Work 13.8 Conclusions References 14 Visualizing Uncertainty in Different Domains: Commonalities and Potential Impacts on HumanDecision-Making 14.1 Introduction 14.2 Uncertainty and Human Decision-Making 14.2.1 How Do Different Representations of Uncertainty Impact Decision-Making? 14.3 Why Is Visualization of Uncertainty Difficult? 14.3.1 We Do Not Really Know What Uncertainty Is 14.3.2 Why Should We Bother? 14.4 Design Considerations for Uncertainty Visualizations 14.4.1 Why Do Users Need Information About Uncertainty? 14.4.2 How Will Uncertainty Impact Users' Interactions with the Data Visualization? 14.4.3 What Kinds of Visual Representations are Appropriate? 14.5 Common Methods for Visualizing Uncertainty 14.5.1 Intrinsic Representations of Uncertainty: Modifying Visual Attributes 14.5.2 Extrinsic Representations of Uncertainty: Adding Graphical Elements 14.5.3 Creating Multiple Visualizations 14.5.4 Summary 14.6 Applications of Uncertainty Visualization Techniques in Different Domains 14.6.1 Intrinsic Representations of Uncertainty 14.6.1.1 Hue 14.6.1.2 Transparency and Texture 14.6.1.3 Summary 14.6.2 Extrinsic Representations of Uncertainty 14.6.2.1 Summary 14.6.3 Multiple Visualizations 14.6.4 Statistical Graphs 14.7 Discussion References 15 Analysis of Sensemaking Strategies: Psychological Theories in Practice 15.1 Introduction 15.2 Related Work 15.3 System Description 15.4 Study 15.4.1 Methodology 15.4.2 Participants 15.4.3 Dataset and Task 15.5 Results 15.5.1 Sensemaking Strategies 15.5.1.1 Pattern: Looking for Similarities Across Several (Groups of) Actors 15.5.1.2 Trend: Looking for Trends in the Data 15.5.1.3 Profiling: Characterizing Crimes or Criminals Based on Features 15.5.1.4 Pattern Incl. Profiling: Combination of Pattern and Profiling 15.5.1.5 Elimination: Generating New Understanding by Eliminating Data Considered as Not Relevant 15.5.1.6 Elimination Incl. Trend: Reducing the Search Space Due to Time 15.5.1.7 Storytelling: Constructing a Story by Explaining the Behavior of Crimes and Relationships 15.5.1.8 Creative Desperation: Not Knowing What to Do Next and the Feeling of Being Stuck in an Impasse 15.5.1.9 Verification: Consulting Both Representations for Verification 15.5.1.10 Contradiction: Realizing a Mismatch of What Was Hypothesized 15.5.1.11 Coincidental Aha's: Seemingly Coincidental Insights That Are Not Conscious 15.5.2 Reported Insights 15.5.3 Employment of Strategies and the Number of Insights 15.5.4 The Quality of Insights 15.6 Discussions References Index