دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Alexey Shipunov
سری:
ناشر:
سال نشر: 2020
تعداد صفحات: [451]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 5 Mb
در صورت تبدیل فایل کتاب Visual Statistics Use R! به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب آمار بصری استفاده از R! نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Foreword I One or two dimensions The data Origin of the data Population and sample How to obtain the data What to find in the data Why do we need the data analysis What data analysis can do What data analysis cannot do Answers to exercises How to process the data General purpose software Statistical software Graphical systems Statistical environments The very short history of the S and R Use, advantages and disadvantages of the R How to download and install R How to start with R Launching R First steps How to type Overgrown calculator How to play with R R and data How to enter the data from within R How to name your objects How to load the text data How to load data from Internet How to use read.table() properly How to load binary data How to load data from clipboard How to edit data in R How to save the results History and scripts R graphics Graphical systems Graphical devices Graphical options Interactive graphics Answers to exercises Types of data Degrees, hours and kilometers: measurement data Grades and t-shirts: ranked data Colors, names and sexes: nominal data Character vectors Factors Logical vectors and binary data Fractions, counts and ranks: secondary data Missing data Outliers, and how to find them Changing data: basics of transformations How to tell the kind of data Inside R Matrices Lists Data frames Overview of data types and modes Answers to exercises One-dimensional data How to estimate general tendencies Median is the best Quartiles and quantiles Variation 1-dimensional plots Confidence intervals Normality How to create your own functions How good is the proportion? Answers to exercises Two-dimensional data: differences What is a statistical test? Statistical hypotheses Statistical errors Is there a difference? Comparing two samples Two sample tests Effect sizes If there are more than two samples: ANOVA One way More then one way Is there an association? Analysis of tables Contingency tables Table tests Answers to exercises Exercises on two samples Exercises on ANOVA Exercises on tables Two-dimensional data: models Analysis of correlation Plot it first Correlation Analysis of regression Single line Many lines More then one way, again Probability of the success: logistic regression Answers to exercises Correlation and linear models Logistic regression How to choose the right method II Many dimensions Draw Pictographs Grouped plots 3D plots Discover Discovery with primary data Shadows of hyper clouds: PCA Correspondence Projections, unfolds, t-SNE and UMAP Non-negative matrix factorization Discovery with distances Distances Making maps: multidimensional scaling Making trees: hierarchical clustering How to know the best clustering method How to compare clusterings How good are resulted clusters Making groups: k-means and friends How to know cluster numbers Use projection pursuit for clustering How to compare different ordinations Answers to exercises Learn Learning with regression Linear discriminant analysis Recursive partitioning Ensemble learnig Random Forest Gradient boosting Learning with proximity Learning with rules Learning from the black boxes Support Vector Machines Neural Networks Semi-supervised learning How to choose the right method Answers to exercises Appendices Example of R session Starting... Describing... Plotting... Testing... Finishing... Answers to exercises Ten Years Later, or use R script How to make your R script My R script does not work! Common pitfalls in R scripting Advices Use the Source, Luke!.. Keep it simple Learn to love errors and warnings Subselect by names, not numbers About reserved words, again The Case-book of Advanced R user A Case of Were-objects A Case of Missing Compare A Case of Outlaw Parameters A Case of Identity The Adventure of the Floating Point A Case of Twin Files A Case of Bad Grammar A Case of Double Dipping A Case of Factor Join A Case of Bad Font A Case of Disproportionate Condition Good, Bad, and Not-too-bad Good Bad Not too bad Answers to exercises R fragments R and databases R and time R and bootstrap R and shape R and Bayes R, DNA and evolution R and reporting R without graphics Answers to exercises Most essential R commands The short R glossary References Reference card