دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Peter Adam Hoeher
سری:
ISBN (شابک) : 3446462066, 9783446462069
ناشر: Carl Hanser Verlag GmbH & Co. KG
سال نشر: 2019
تعداد صفحات: 274
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 7 مگابایت
در صورت تبدیل فایل کتاب Visible Light Communications: Theoretical and Practical Foundations به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب ارتباطات نور مرئی: مبانی نظری و عملی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
ارتباطات نور مرئی (VLC) یک فناوری نوظهور انتقال داده بی سیم است. نور به طور همزمان برای روشنایی و همچنین برای اهداف ارتباطی و/یا موقعیت یابی استفاده می شود. اگر سیستمهای VLC کاملاً شبکه باشند، Li-Fi نامیده میشوند، نقاط دسترسی Wi-Fi را تکمیل میکنند. VLC یک حادثه از ارتباطات بی سیم نوری (OWC) است. سیستمهای OWC امنیت داده بالایی را ارائه میکنند، بدون مجوز هستند و ممکن است سیستمهای رادیویی را در صورت خرابی یا عدم مجاز جایگزین کنند. فناوری VLC زیرساخت روشنایی هوشمند و موارد استفاده از اینترنت اشیاء (IoT) را بهبود می بخشد. ارتباط Car-to-X مبتنی بر LED یک پلتفرم توانمند برای رانندگی مستقل است. این کتاب درسی کاربردهای OWC، اصول مهندسی روشنایی، مدلسازی کانال، طرحهای مدولاسیون شدت نوری، تلاشهای استانداردسازی VLC، مفهوم رادیویی تعریفشده توسط نرمافزار، معیارهای انتخاب دستگاههای فوتونیک، طرحهای مدار بنیادی، و موقعیتیابی نور مرئی را پوشش میدهد. این کتاب برای دانشجویان مهندسی برق و اطلاعات یا مناطق مجاور و همچنین برای مهندسان، دانشمندان اطلاعات و فیزیکدانان در تحقیق و توسعه نوشته شده است.
Visible Light Communication (VLC) is an emerging wireless data transmission technology. Light is used simultaneously for illumination as well as for communication and/or positioning purposes. If fully networked, dubbed Li-Fi, VLC systems complement Wi-Fi access points. VLC is an incident of optical wireless communications (OWC). OWC systems provide high data security, are license-free, and may substitute radio systems when these either fail or are not permitted. VLC technology enhances smart lighting infrastructure and Internet-of-Things (IoT) use cases. LED-based Car-to-X communication is an enabling platform towards autonomous driving. The textbook covers OWC applications, fundamentals of illumination engineering, channel modeling, optical intensity modulation schemes, VLC standardization efforts, the software-defined radio concept, selection criteria of photonic devices, fundamental circuit designs, and visible light positioning. The book is written for students in electrical and information engineering or adjacent areas, as well as for engineers, information scientists, and physicists in research and development.
1 Introduction 1.1 Historical Background and Scope 1.2 Motivations for Using Visible Light Communication 1.3 Applications of Visible Light Communication 1.4 Smart Lighting and VLC Consumer Products 1.5 Chapter Summary 1.6 Outline Problems References 2 Fundamentals of Illumination Engineering 2.1 Light Spectrum 2.2 Color Mixing 2.3 CIE, RGB, and HSV Color Spaces 2.3.1 CIE 1931 XYZ Color Space 2.3.2 RGB Color Space 2.3.3 HSV Color Space 2.4 Color Quality 2.5 Candela vs. Lumen vs. Lux 2.6 Dimming 2.7 Flicker 2.8 Human Centric Lighting 2.9 Chapter Summary Problems References 3 VLC and IR/UV Channel Modeling 3.1 Lambertian and Generalized Lambertian Sources 3.2 Propagation in Free-Space 3.3 Indoor Propagation 3.4 Propagation in Sea Water 3.5 Infrared and Ultraviolet Channel Modeling 3.6 Equivalent Discrete-Time Electrical Channel Model 3.7 Signal-to-Noise Ratio 3.8 Chapter Summary Problems References 4 Modulation Schemes for Optical Wireless Communications 4.1 Intensity Modulation and Direct Detection (IM/DD) 4.2 Constraints and Performance Criteria 4.3 Single-Carrier Modulation (SCM) 4.3.1 On-Off Keying (OOK) 4.3.2 Amplitude Shift Keying (ASK), PAM and QAM 4.3.3 Pulse Width Modulation (PWM) 4.3.4 Pulse Position Modulation (PPM) 4.3.5 Variable Pulse Position Modulation (VPPM) 4.3.6 Carrierless Amplitude and Phase Modulation (CAP) 4.4 Color-Domain Modulation 4.4.1 Color Shift Keying (CSK) 4.4.2 Digital Color Shift Keying (DCSK) 4.4.3 Color Intensity Modulation (CIM) 4.4.4 Metameric Modulation (MM) 4.4.5 Deep-Learning-Based Multicolor Transceiver Design 4.5 Multi-Carrier Modulation (MCM) 4.5.1 Orthogonal Frequency-Division Multiplexing (OFDM) 4.5.2 Unipolar OFDM Versions: DMT, DCO-OFDM, PAM-DMT, ACO-OFDM, Flip-OFDM, U-OFDM 4.5.3 Spectrally-Enhanced Unipolar OFDM: SEE-OFDM, LACO-OFDM, eACO- OFDM, eU-OFDM, GREENER-OFDM, ePAM-DMT 4.5.4 Hybrid Schemes: SO-OFDM, RPO-OFDM, ADO-OFDM, HACO-OFDM, P-OFDM, ASCO-OFDM 4.5.5 Carrierless OFDM (cOFDM) 4.5.6 Non-DFT-Based Multi-Carrier Modulation: DHT, WPDM, HCM 4.6 Code-Division Multiplexing (CDM) 4.7 Superposition Modulation (SM) 4.8 Camera-Based Communication 4.8.1 Global-Shutter Sampling 4.8.2 Rolling-Shutter Sampling 4.8.3 Region-of-Interest Signaling 4.8.4 Hybrid Camera-Based Photodetector-Based Systems 4.9 Chapter Summary Problems References 5 Optical Multiple-Input Multiple-Output (MIMO) Techniques 5.1 Basics of Optical MIMO Transmission 5.2 Introduction to Orthogonal and Quasi-Orthogonal Space-Time Block Codes 5.2.1 Optical Space-Time Coding with On-Off Keying 5.2.2 Optical Space-Time Coding with Q-ary Amplitude Shift Keying 5.2.3 Optical Space-Time Coding with Q-ary Pulse Position Modulation 5.3 Repetition MIMO 5.4 Spatial Multiplexing 5.5 Spatial Modulation 5.6 Spatial Optical OFDM 5.7 MIMO Aspects of Superposition Modulation 5.8 Multiuser MISO Broadcasting 5.9 MIMO Aspects of Optical Camera Communications 5.10 Chapter Summary Problems References 6 OWC Standardization 6.1 IR/VLC Standards and Ongoing Standardization Efforts 6.2 IEEE 802.15.7 VLC Standard 6.2.1 PHY I Specifications 6.2.2 PHY II Specifications 6.2.3 PHY III Specifications 6.3 Chapter Summary Problems References 7 Software-Defined Radio Concept and its Applications in OWC 7.1 Software-Defined Radio Concept 7.2 Adaptive Radio, Cognitive Radio, and Intelligent Radio 7.3 Hardware-Friendly Modulation 7.4 Hardware Platforms Suitable for Data Rates in the Mbps Range 7.4.1 Raspberry Pi 7.4.2 STEMlab (Red Pitaya) 7.4.3 STM32 Microcontroller 7.5 Hardware Platforms Suitable for Data Rates in the Gbps Range 7.6 Chapter Summary Problems References 8 Photonic Devices and High-Speed Amplifiers 8.1 Semiconductor-Based Light Sources 8.1.1 III-V Semiconductor LEDs 8.1.2 OLEDs and other LED Types 8.1.3 Lasers 8.2 Semiconductor-Based Photodetectors 8.2.1 Silicon Photodiodes and Phototransistors 8.2.2 Avalanche Photodetectors and Silicon Photomultipliers 8.2.3 CCD and CMOS Image Sensors 8.3 High-Speed Amplifiers 8.3.1 Discrete Devices 8.3.2 Operational Amplifiers 8.4 Chapter Summary Problems References 9 Circuit Design Rules for OWC Transmitters and Receivers 9.1 LED and Laser-Diode Drivers 9.1.1 Drivers Suitable for Two-Level Modulation Schemes 9.1.2 Drivers Suitable for Analog Waveforms 9.1.3 Multistring LED Drivers 9.2 Transimpedance Amplifiers 9.2.1 Photovoltaic Mode vs. Photoconductive Mode 9.2.2 Photodetector Circuit Design Wizard 9.3 Compensation of Ambient Light 9.3.1 Circuit Design Solutions 9.3.2 Mechanical Constructions 9.3.3 Smart Glass and LCD-Based Optical Filtering 9.4 Chapter Summary Problems References 10 Selected VLC and FSO Applications 10.1 Light Fidelity (Li-Fi) 10.2 Optical Underwater Communication 10.3 Free-Space Optical Ethernet 10.4 Optical Relaying and Modulating Retroreflection 10.5 Free-Space Optical and Hybrid Microwave/Optical Communications 10.6 Chapter Summary Problems References 11 Optical Rangefinding and Visible Light Positioning 11.1 Optical Rangefinding 11.1.1 Optical Runtime Measurements 11.1.2 Time-of-Flight Camera 11.1.3 Triangulation 11.1.4 Range Estimation by Stereo Vision 11.2 Visible Light Positioning (VLP) 11.2.1 Proximity Estimation 11.2.2 Received Signal Strength (RSS) 11.2.3 Fingerprinting (FP) 11.2.4 Time-of-Arrival (ToA) Localization 11.2.5 Time-Difference-of-Arrival (TDoA) Localization 11.2.6 Angle-of-Arrival (AoA) Localization 11.2.7 Image-Sensor-Based Localization 11.2.8 Hybrid Localization 11.3 Chapter Summary Problems References List of Abbreviations Subject Index