دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Amal Kumar Dhara. Amit Kumar Nayak
سری:
ISBN (شابک) : 032391814X, 9780323918145
ناشر: Academic Press
سال نشر: 2022
تعداد صفحات: 808
[810]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 13 Mb
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Viral Infections and Antiviral Therapies به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب عفونت های ویروسی و درمان های ضد ویروسی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
عفونت های ویروسی و درمان های ضد ویروسی پوشش جامعی از عفونت های ویروسی و انتقال آن ها را فراهم می کند. پوشش شامل عوامل ضد ویروسی، درمان ها، مکانیسم های آنها و استراتژی های درمانی است. این کتاب در چهار بخش، شامل مقدمه ای بر درمان های ضد ویروسی، عفونت های ویروسی و انتقال آن ها، عوامل ضد ویروسی و درمانی، و مروری بر بازار و تحولات آتی سازماندهی شده است. فصلهای هر بخش از کتاب موضوعات کلیدی مختلفی را مورد بحث قرار میدهند که توسط یک گروه بینالمللی متشکل از کارشناسان برجسته ارائه شده است. ویروسهای نوظهور و مقاربتی را پوشش میدهد، از جمله نحوه انتقال و پاتوفیزیولوژی عفونتهای ویروسی، عوامل ضد ویروسی و درمانی برای ویروسهایی مانند روتا ویروسها، انتروویروسها و کروناویروسها را توضیح میدهد.
Viral Infections and Antiviral Therapies provides comprehensive coverage of viral infections and their transmission. Coverage includes antiviral agents, therapeutics, their mechanisms and treatment strategies. The book is organized into four sections, including an introduction to antiviral therapies, viral infections and their transmission, antiviral agents and therapeutics, and a market overview and future developments. The chapters in each section of the book discuss various key topics that are contributed to by an international group of leading experts. Covers emerging and sexually transmitted viruses, including mode of transmission and pathophysiology of viral infections Describes antiviral agents and therapeutics for viruses such as rotaviruses, enteroviruses and coronaviruses Discusses strategies for the delivery of antiviral agents and vaccinations
Front Cover Viral Infections and Antiviral Therapies Copyright Page Contents List of contributors Preface I. Introduction 1 Introduction to antiviral therapy 1.1 Introduction 1.2 Virus replication cycle 1.3 Virus transmission and types of viral infections 1.4 Antiviral agents 1.4.1 Antiherpes virus agents 1.4.2 Anti-HIV agents 1.4.3 Antiviral drugs used for the treatment of hepatitis 1.4.4 Anti-influenza agents 1.4.5 Antiviral agents against flavivirus 1.5 Antiviral agents obtained from plant sources 1.6 Antiviral vaccines 1.7 Immunotherapy and role of nutraceuticals in viral infection 1.8 Challenges in the development of antiviral agents 1.9 Conclusion References Further reading II. Viral infections and transmission 2 Emerging viral diseases 2.1 The everchanging landscape of infectious diseases 2.2 Causes of emergence 2.3 Ebola virus 2.4 Dengue virus 2.5 Chikungunya virus 2.6 West Nile virus 2.7 Zika virus 2.8 Yellow fever virus 2.9 Nipah virus 2.10 Influenza virus 2.11 Corona viruses 2.12 Prevention and control 2.13 The global response 2.14 Conclusions and the way forward References 3 Evolution and transmission of viruses 3.1 Introduction 3.2 Viral Evolution 3.2.1 Genetic basis of virus evolution 3.2.1.1 Mutation 3.2.1.2 Genetic recombination 3.2.1.3 Genetic reactivation 3.2.1.4 Viral interference 3.2.2 Ecological basis of virus evolution 3.2.2.1 Reproductive rate and antigenic diversity 3.2.2.2 Herd immunity and selective pressure 3.2.2.3 The spillover event 3.3 Transmission 3.4 Modes of transmission of viruses 3.4.1 Respiratory tract 3.4.2 Gastrointestinal tract 3.4.3 Genital tract 3.4.4 Skin 3.4.5 Eyes 3.4.6 Placenta 3.4.7 Transplants 3.5 Conclusion References Further reading 4 Mode of viral infections and transmissions 4.1 Introduction 4.2 Epidemiological triad and viral infection 4.3 Transmission of infection and clinical presentation 4.4 Modes of transmission of viral infection 4.5 Conclusion 4.6 Conflict of interest References 5 Transmission and intervention dynamics of SARS-CoV-2 5.1 Introduction 5.2 Coronaviruses 5.3 Transmission characteristics of SARS-CoV-2 5.4 Intervention, strategies, and impacts 5.5 Summary References 6 Sexually transmitted viral infections 6.1 Introduction 6.2 Human papilloma virus (HPV infection) 6.3 Effects of human papilloma virus on pregnancy and the neonate [2,4] 6.4 Herpes simplex virus type 1 and 2 6.5 Human T-cell lymphotropic virus infection 6.6 Hepatitis A (HAV infection) 6.7 Hepatitis B (HBV infection) 6.8 Hepatitis C (HCV infection) 6.9 Prevention of sexually transmitted viral infections 6.9.1 Cognizance 6.9.2 Affective 6.9.3 Psychomotor 6.10 Health education 6.10.1 Individual level 6.10.2 Mass level 6.11 Conclusion References 7 Testing viral infections 7.1 Introduction 7.2 The purpose of laboratory diagnosis of viral infections 7.3 Sample collection, packaging, and transport 7.4 Type of specimen 7.5 Labeling/requisition form has the following information 7.6 Methods in diagnostic virology 7.6.1 Virus isolation 7.6.1.1 Tissue culture 7.6.1.1.1 Preparation of the cell lines 7.6.1.1.2 Types of cell lines 7.6.1.1.3 Cytopathic effect 7.6.1.2 Animal inoculation 7.6.1.3 Egg inoculation 7.6.2 Assays measuring viral infectivity 7.6.2.1 Quantitative assays 7.6.2.2 Quantal assays 7.6.2.3 Hemagglutination 7.6.3 Direct microscopy 7.6.3.1 Electron microscopy 7.6.3.2 Fluorescence microscopy 7.6.3.3 Immunoperoxidase staining 7.6.4 Histology/cytology 7.6.5 Detection of viral antigens and antibody (serology) 7.6.5.1 Immunochromatography 7.6.5.2 Enzyme-linked immunosorbent assay 7.6.5.3 Neutralization assays 7.6.5.4 Latex particle agglutination 7.6.5.5 Western blotting 7.6.5.5.1 Applications of serology 7.6.6 Molecular techniques 7.6.6.1 Detection of viral nucleic acids 7.6.6.1.1 Nucleic acid hybridization 7.6.6.1.2 Polymerase chain reaction 7.6.6.2 Microarray technologies 7.6.6.3 Sequencing 7.6.6.3.1 Sanger sequencing 7.6.6.3.2 Next-generation sequencing 7.6.6.3.3 Third-generation sequencing 7.6.6.3.4 Fourth-generation sequencing 7.7 Conclusion Further reading 8 Electron microscopic methods for virus diagnosis Abbreviations 8.1 Introduction 8.1.1 Electron microscopy as a diagnostic tool 8.1.2 Electron microscopy in plant and animal virus diagnosis 8.1.3 Dengue virus 8.1.4 Rabies virus 8.1.5 Ebola virus 8.1.5.1 Cucumber mosaic virus 8.1.5.2 Tobacco mosaic virus 8.1.5.3 Tomato spotted wilt virus 8.1.5.4 Tomato yellow leaf curl virus 8.1.5.5 Potato virus X and potato virus Y 8.2 Other plant viruses 8.2.1 Sample preparation for electron microscopic analysis 8.2.2 Scanning and transmission electron microscopy: structure and functions 8.2.3 Electron generator 8.2.4 Electron lenses 8.2.5 Signals and detectors 8.2.6 Vacuum system 8.3 Concluding remarks and future trends References III. Antiviral agents and therapeutics 9 Virotherapy 9.1 Introduction 9.2 Oncolytic virus in common cancers and molecular changes observed during infection 9.3 Breast cancer 9.4 Lung cancer 9.5 Bladder and endometrial cancer 9.6 Renal and prostate cancer 9.7 Leukemia 9.8 Hepatocellular carcinoma 9.9 Melanoma 9.10 Brain cancer 9.11 Oncolytic viruses under clinical trial 9.12 Future directions Softwares used for images Author contribution Conflicts of interest Funding statement Authors statement References 10 Challenges in designing antiviral agents 10.1 Introduction 10.2 Strategies for the design of antiviral agents 10.2.1 Virus attachment (or adsorption) inhibitors 10.2.2 Virus entry inhibitors 10.2.3 Viral polymerase inhibitors 10.2.4 Viral protease inhibitors 10.3 Biggest challenging viruses 10.3.1 Herpes viruses (HSV-1 and HSV-2) 10.3.1.1 Promising compounds against herpes simplex virus 10.3.2 Respiratory viruses 10.3.2.1 Influenza A and B 10.3.2.1.1 Adamantane analogs and their limitations in drug design 10.3.2.1.2 Neuraminidase inhibitors against influenza-A and influenza-B 10.3.2.2 Severe-acute respiratory syndrome coronavirus-2 10.3.2.2.1 Nucleoside analogs against severe-acute respiratory syndrome coronavirus-2 10.3.3 Human immunodeficiency virus 10.3.3.1 The virus and its some limitations in drug design 10.3.3.2 Reverse transcriptase inhibitors 10.3.3.3 Anti-HIV protease inhibitors 10.3.4 Emerging viruses 10.3.4.1 Hepatitis B virus 10.3.4.1.1 Some limitations and challenges to identifying new anti-hepatitis B virus drugs 10.3.4.1.2 Promising compounds targeting anti-hepatitis B virus activity 10.3.4.2 Dengue virus 10.3.4.2.1 Promising compounds discovered against dengue virus 10.3.4.2.2 Promising active compounds against dengue virus 10.3.5 Hemorrhagic fever viruses 10.3.5.1 Ebola virus 10.3.5.1.1 Some limitations to overcome in drug discovery targeting Ebola virus 10.3.5.1.2 Promising compounds against Ebola virus 10.3.5.2 Lassa virus 10.3.5.2.1 Promising compounds against Lassa virus 10.4 New trends, challenges, and opportunities 10.5 Conclusions Conflict of interest Consent for publication References 11 Anti-influenza agents 11.1 Introduction 11.2 The virus 11.2.1 Virion structure 11.2.2 Viral genes and viral proteins 11.2.3 Life cycle of influenza virus 11.3 Anti-influenza agents 11.3.1 Regulatory authority-approved anti-influenza agents 11.3.1.1 Class I. Matrix protein 2 ion channel inhibitor 11.3.1.1.1 Amantadine 11.3.1.1.2 Rimantadine 11.3.1.2 Class II. Neuraminidase inhibitors 11.3.1.2.1 Zanamivir 11.3.1.2.2 Oseltamivir 11.3.1.2.3 Peramivir 11.3.1.2.4 Laninamivir 11.3.1.3 Class III. RNA-dependent RNA polymerase inhibitors 11.3.1.4 Class IV. Polymerase acidic protein inhibitor 11.3.1.5 Hemagglutinin inhibitor 11.3.2 Anti-influenza agents under development 11.3.2.1 Anti-influenza agents under clinical trials 11.3.2.1.1 Nitazoxanide 11.3.2.1.2 DAS181 11.3.2.1.3 AL-794 11.3.2.2 Anti-influenza agents under basic research 11.3.3 Anti-influenza agents from traditional plants 11.4 Conclusion References 12 Anti-herpes virus agents 12.1 Herpes simplex: a DNA virus 12.2 Clinical administration of viral infection 12.2.1 Acyclovir 12.2.1.1 Mechanism of action 12.3 Disadvantages of acyclovir 12.3.1 Famciclovir/penciclovir 12.3.1.1 Mechanism of action 12.3.2 Ganciclovir 12.3.2.1 Mechanism of action 12.3.3 Foscarnet 12.3.3.1 Mechanism of action 12.3.3.2 Cidofovir 12.3.3.2.1 Mechanism of action 12.3.3.3 Fomivirsen 12.3.3.4 Mechanism of action 12.3.3.5 Trifluridine 12.3.3.6 Mechanism of action 12.3.4 Indoxuridine 12.3.4.1 Mechanism of action 12.4 Ethnomedicine: a gift of God to solve the problems of synthetic drugs 12.5 Mode of action of plant-derived anti-herpes virus agents 12.6 Inhibition of virus replication 12.7 Inhibition of herpes simplex viruses by immunomodulation 12.8 Interference with virus release 12.9 Inhibition of herpes simplex viruses by autophagy 12.10 Inhibition of viral entry into the host cell 12.11 Conclusion References 13 Antiretroviral therapy 13.1 Introduction 13.2 Formulation of antiretroviral treatment 13.3 General principles for antiretroviral therapy initiation 13.4 Considerations before initiation of antiretroviral therapy 13.5 Monitoring on the patient on antiretroviral therapy 13.6 Immune reconstitution inflammatory syndrome 13.7 Antiretroviral failure 13.8 Drug interaction 13.9 Antiretroviral drug resistance 13.10 Preexposure prophylaxis 13.11 Postexposure prophylaxis 13.12 Prevention of mother child transmission References 14 Rotavirus and antirotaviral therapeutics: trends and advances 14.1 Introduction 14.2 Supportive/symptomatic therapies 14.2.1 Fluid therapy 14.2.2 Antibiotic treatment 14.3 Antiviral drugs/mimetics 14.3.1 Interference in attachment and entry of virus into host cells 14.3.2 Interefrence in host cell lipid metabolic pathways 14.3.3 Inhibition of viroplasm formation 14.3.4 Interefrence in viral RNA and protein synthesis 14.3.5 Targeting RNA interference pathway 14.4 Passive immunotherapy 14.5 Immunotherapeutics 14.6 Immunomodulators 14.7 Cytokines-based therapeutics 14.8 Toll-like receptors-based therapeutics 14.9 Herbal/medicinal plants 14.10 Probiotics 14.11 Advances in drug delivery: nanotechnology-based approach 14.12 Neutraceuticals 14.12.1 Milk proteins 14.12.2 Cholesterol 14.12.3 L-isoleucine 14.12.4 Vitamin D3 14.12.5 Oligosaccharides 14.13 Antioxidants 14.14 Combinational therapy 14.15 Other potential therapeutic approaches 14.16 Conclusion and future prospects References 15 Current therapeutic strategies and novel antiviral compounds for the treatment of nonpolio enteroviruses 15.1 Introduction 15.2 Structure and life cycle 15.3 Clinical manifestations 15.4 Antiviral agents 15.4.1 Capsid inhibitors 15.4.2 Inhibitors of nonstructural viral components 15.4.3 Nucleoside analogs 15.4.4 Inhibition of host cellular components 15.4.5 Other compounds 15.5 Advances in vaccine development for HFMD and EV-D68 infections 15.5.1 Inactivated whole vaccines 15.5.2 Recombinant subunit vaccines 15.5.3 Multivalent and chimeric vaccines 15.5.4 Vaccine candidates for enterovirus D68 15.5.5 Live attenuated vaccines 15.6 Conclusion References 16 Antiviral agents against flaviviruses 16.1 Introduction 16.2 Flaviviruses 16.2.1 Flavivirus genus 16.2.2 Flaviviruses proteins 16.2.2.1 Structural proteins 16.2.2.2 Nonstructural proteins 16.3 Why develop novel antiviral drugs? 16.4 Recent advances in inhibitors targeting flaviviruses 16.4.1 Hepatitis C virus 16.4.2 Dengue and Zika viruses 16.4.3 Japanese encephalitis virus 16.4.4 West Nile virus 16.4.5 Tick-born encephalitis virus 16.4.6 Yellow fever virus 16.5 Conclusion Conflict of interest References 17 Pathophysiology of HIV and strategies to eliminate AIDS as a public health threat 17.1 Background 17.1.1 Human immunodeficiency virus 17.1.2 Acquired immunodeficiency syndrome 17.1.3 Epidemiology 17.1.4 Transmission and establishment of infection 17.1.5 Human immunodeficiency virus life cycle 17.1.6 Physiopathogenesis 17.1.6.1 CD4+ T cell depletion 17.1.6.2 Immunoactivation 17.1.6.3 Depletion of intestinal lymphoid tissue 17.1.6.4 Metabolic alterations 17.1.7 Response to human immunodeficiency virus infection 17.1.7.1 Humoral response 17.1.7.2 Cellular response 17.1.7.3 Viral escape mechanism 17.2 Natural history of human immunodeficiency virus infection 17.2.1 Transmission route 17.2.2 Manifestation of acute human immunodeficiency virus infection 17.2.3 Laboratory diagnosis 17.2.4 Antiretroviral treatment 17.3 Strategies to eliminate human immunodeficiency virus as a public health threat 17.3.1 Community participation 17.3.2 Expansion of testing 17.3.3 Preexposure prophylaxis 17.3.4 Antiretroviral treatment 17.3.5 Human immunodeficiency virus cure References 18 Herbal drugs to combat viruses 18.1 Introduction 18.2 Phytochemicals preventing attachment of virus to host cell 18.3 Phytochemicals preventing penetration and uncoating of viruses 18.4 Phytochemicals inhibiting replication of viral nucleic acids 18.5 Phytochemicals preventing assembly and release of virus References 19 Strategies for delivery of antiviral agents 19.1 Introduction 19.2 Classes of antiviral drugs 19.2.1 Antihuman immunodeficiency virus drugs 19.2.2 Antiviral drugs used for the treatment of herpes 19.2.3 Antihepatitis drugs 19.2.4 Antiviral drugs for the treatment of Ebola 19.2.5 Antiviral drugs used for the treatment of human papillomavirus 19.2.6 Viral pneumonia antiviral drugs 19.2.7 Antiviral drugs used for the treatment of respiratory infection 19.3 The general mechanism of viral infections 19.4 Challenges in the treatment of viral infections 19.5 Combination therapy (fixed-dose combination) for the treatment of viral infections 19.6 Hybrid compounds designed for the treatment of viral infections 19.6.1 Anti-human immunodeficiency virus hybrids 19.6.2 Anti-herpes simplex virus hybrids 19.6.3 Anti-hepatitis 19.6.4 Hybrid compounds with anti-COVID-19 19.6.5 Ebola 19.6.6 Human papilloma virus 19.6.7 Middle East respiratory syndrome 19.7 Lipid-based drug delivery systems 19.7.1 Emulsion 19.7.2 Liposomes 19.7.3 Solid lipid nanoparticles 19.8 Polymer-based drug delivery system for viral infections 19.8.1 Micelles 19.8.1.1 Micelles for loaded with antihuman immunodeficiency virus drugs 19.8.1.2 Micelles for herpes management 19.8.1.3 Micelles for hepatitis treatment 19.8.1.4 Micelles for the treatment of Human papilloma virus 19.8.1.5 Micelles for the treatment of respiratory infections (common cold, COVID-19, and Middle East respiratory syndrome) 19.8.2 Dendrimers 19.8.2.1 Dendrimers for the treatment of human immunodeficiency virus 19.8.2.2 Dendrimers for herpes treatment 19.8.2.3 Dendrimers for hepatitis treatment 19.8.2.4 Dendrimers for Ebola treatment 19.8.2.5 Dendrimers for Human papilloma virus treatment 19.8.2.6 Dendrimers efficacy against respiratory infections: COVID-19 and Middle East respiratory syndrome 19.8.3 Polymer-drug conjugates 19.8.3.1 Polymer-drug conjugates for human immunodeficiency virus treatment 19.8.3.2 Polymer-drug conjugates for herpes and hepatitis treatment 19.8.3.3 Polymer-drug conjugates for COVID-19 treatment 19.8.4 Nanocapsules 19.8.4.1 Nanocapsules for human immunodeficiency virus treatment 19.8.4.2 Nanocapsules for hepatitis treatment 19.8.5 Polymeric nanoparticles and nanospheres 19.8.5.1 Nanoparticles and nanospheres for human immunodeficiency virus treatment 19.8.5.2 Polymeric nanoparticles and nanospheres for the treatment of herpes 19.8.5.3 Polymeric nanoparticles and nanospheres for the treatment of hepatitis 19.8.5.4 Polymeric nanoparticles and nanospheres for COVID-19 treatment 19.8.6 Hydrogels and nanogels 19.8.6.1 Hydrogels and nanogels for human immunodeficiency virus treatment 19.8.6.2 Hydrogels and nanogels for herpes treatment 19.8.6.3 Hydrogels and nanogels for hepatitis and Human papilloma virus treatment 19.8.6.4 Hydrogels and nanogels for Ebola treatment 19.9 Conclusion and future perspective References 20 Nanovesicles for delivery of antiviral agents Abbreviation 20.1 Introduction 20.2 Overcoming the challenges of traditional delivery of antiviral agents 20.3 Nanovesicles 20.3.1 Nanovesicles composition 20.3.2 Nanovesicles fabrication methods 20.3.2.1 Thin film hydration method 20.3.2.2 Reverse phase evaporation method 20.3.2.3 Detergent removal by dialysis method 20.3.3 Nanovesicles characterization 20.3.4 Nanovesicles applications in nanomedicine 20.3.4.1 Liposomes 20.3.4.2 Niosomes 20.3.4.3 Transfersomes 20.3.4.4 Ethosomes 20.3.5 Challenges of nanovesicles for nanomedicine applications 20.4 Nanovesicles and biomimetic nanovesicles for delivery of antiviral agents 20.4.1 Liposomes for delivery of antiviral agents 20.4.2 Niosomes for delivery of antiviral agents 20.4.3 Ethosomes for delivery of antiviral agents 20.4.4 Biomimetic nanovesicles for delivery of antiviral agents 20.4.5 Exosomes for delivery of antiviral agents 20.5 Conclusion and future prospects References 21 Antiviral biomaterials 21.1 Introduction to antiviral biomaterials 21.1.1 Types of biomaterials 21.1.1.1 Hydrogels 21.1.1.2 Cryogels 21.1.1.3 Nanoparticles 21.2 Mechanism of action 21.2.1 Structure of virus 21.2.2 Action mechanism of biomaterials 21.2.2.1 Physical adsorption of viruses 21.2.2.2 Entry inhibitors 21.2.2.3 Induction of irreversible viral deformation 21.2.2.4 Interference in nucleic acid replication 21.2.2.5 Blockage of virion release from infected cells 21.3 Applications of antiviral biomaterials 21.3.1 Diagnostics 21.3.1.1 Nucleic acid testing 21.3.1.2 Point-of-care tests 21.3.2 Antiviral therapies 21.3.2.1 Drug delivery 21.3.2.2 Vaccination 21.3.3 Other antiviral strategies 21.3.3.1 Surface inactivation 21.3.3.2 Viral filtration 21.4 Recent advancements 21.4.1 Biomaterials and nanotechnology 21.4.1.1 Nanoparticles 21.4.1.2 Nanodecoy 21.4.1.3 Nanosponges 21.4.2 Adjuvants 21.4.3 Challenges associated with antiviral biomaterials 21.5 Summary/conclusion Conflict of interest References 22 Antiviral biomolecules from marine inhabitants 22.1 Introduction 22.2 Marine polysaccharides 22.2.1 Chitin, chitosan, and their derivatives 22.2.2 Carrageenan 22.2.3 Alginates 22.2.4 Fucans, fucoidans 22.3 Other marine polysaccharides as antiviral biomaterials 22.4 Marine peptides as antiviral biomaterials 22.5 Conclusion References 23 Plant polysaccharides as antiviral agents 23.1 Introduction 23.2 Antiviral mechanisms in polysaccharides 23.2.1 Directly interacting with virus 23.2.2 Inhibiting virus adsorption and invasion 23.2.3 Inhibiting viral transcription and replication 23.2.4 Activating host antiviral immunomodulatory system 23.3 Plant polysaccharides 23.4 Antiviral activities of plant polysaccharides 23.4.1 Effect on hepatitis viruses 23.4.2 Effect on influenza viruses 23.4.3 Effect on herpes simplex viruses 23.4.4 Effect on human immunodeficiency viruses 23.4.5 Effect on enterovirus 23.4.6 Effect of Newcastle disease virus 23.4.7 Effect on rotavirus 23.4.8 Effect on other viruses 23.5 Plant polysaccharide adjuvant for COVID-19 vaccine 23.6 Conclusions and future perspectives References 24 Antiviral peptides against dengue virus 24.1 Introduction 24.1.1 Dengue virus 24.1.2 The life cycle of dengue virus 24.1.3 Antiviral peptides as potential therapeutic agents against dengue virus 24.2 Antiviral peptides targeting dengue virus 24.2.1 Peptides from animal origins 24.2.2 Peptides from plant origins 24.2.3 Synthetic peptides 24.2.4 Recombinant peptides 24.3 Strategies to identify and develop antiviral peptides against dengue virus 24.3.1 Biopanning of phage display peptide libraries 24.3.2 Structure-based design of antiviral peptides 24.3.2.1 Molecular docking 24.3.2.2 De novo design of antiviral peptides 24.3.2.3 Rational design of antiviral peptides 24.4 Direct interactions between antiviral peptides with host cell receptors and enzymes 24.4.1 Interactions between antiviral peptides and dengue virus host cell receptors 24.4.2 Interactions between antiviral peptides and dengue virus proteases 24.4.3 Interactions between antiviral peptides and dengue virus methyltransferases 24.5 Advantages of peptides as antiviral agents 24.6 Limitations of peptides 24.6.1 Chemical modifications to overcome peptide limitations 24.6.2 Delivery of peptides using nanomaterials 24.7 Conclusion Disclosure of interest References 25 mRNA vaccines for COVID-19 25.1 Introduction 25.2 General advantages associated with messenger RNA vaccines 25.3 General concerns associated with messenger RNA vaccines 25.4 The target viral antigen selection for the COVID-19 messenger RNA vaccines 25.5 Development of the COVID-19 messenger RNA vaccines 25.5.1 The characteristic features of the sequence of the Pfizer-BioNTech (BNT162b2) mRNA vaccine 25.6 Lipid nanoparticles-mediated delivery of the COVID-19 messenger RNA vaccines 25.6.1 Composition and functional roles of the components of the LNP delivery system 25.6.1.1 The cationic or ionizable lipids 25.6.1.2 Phospholipids 25.6.1.3 Cholesterol 25.6.1.4 Polyethylene glycol lipids 25.7 Vaccine uptake at the injection site and translation at the cellular level 25.8 Immune responses induced by COVID-19 messenger RNA vaccines 25.8.1 Humoral immunity and germinal center reactions 25.8.2 Innate immune response induced by the messenger RNA vaccines 25.9 Conclusion References 26 Immunotherapy as an emerging and promising tool against viral infections Abbreviation 26.1 Introduction 26.2 Vaccines 26.3 Antibody-based therapies 26.4 Chimeric antigen receptor T cells immunotherapy 26.4.1 Checkpoint inhibition therapy 26.5 Defensin therapy References 27 Role of nutraceuticals as immunomodulators to combat viruses 27.1 Introduction 27.2 Immunity and its classification 27.2.1 Innate immunity 27.2.2 Adaptive immunity 27.2.2.1 The cells involved in adaptive immune responses are 27.2.2.1.1 T cells and antigen-presenting cells 27.2.2.1.2 T helper cells 27.2.2.1.3 B cells 27.2.2.1.4 Natural killer cells 27.2.2.2 Mediators in immune response 27.2.2.2.1 Cytokines 27.2.2.2.2 Chemokines 27.2.2.2.3 Interferons 27.2.2.2.4 Complement activation 27.2.2.2.5 Oxidative stress 27.3 Virus evasion of the host immune system 27.3.1 Mechanism of evasion of major histocompatibility complex class I and cytotoxic T lymphocytes 27.3.2 Molecular mimicry and immune evasion 27.3.3 Complement evasion 27.4 Mechanism of action of nutraceuticals 27.4.1 Inhibiting NOX-2 27.4.2 Enhancing MAVS 27.4.3 Antioxidant potency 27.5 Nutraceuticals 27.5.1 Definition 27.5.2 Classification of nutraceuticals 27.5.2.1 Dietary fiber 27.5.2.1.1 Probiotics 27.5.2.1.2 Prebiotics 27.5.2.2 Polyunsaturated fatty acids 27.5.2.3 Antioxidants 27.5.2.4 Egg as a functional food 27.5.2.5 Nutraceuticals from microbes 27.5.2.6 Citrus fruits 27.5.2.7 Nutraceuticals from marine organisms 27.5.2.8 Herbs and spices 27.5.2.8.1 Capsicum 27.5.2.8.2 Resveratrol 27.5.2.8.3 Glycyrrhizin 27.5.2.8.4 Black caraway 27.5.2.8.5 Garlic 27.5.2.8.6 Cinnamon 27.5.2.8.7 Black pepper 27.5.2.8.8 Moringa 27.5.2.8.9 Quercetin 27.5.2.9 Mushrooms 27.5.2.10 Vitamins and minerals 27.5.2.10.1 Vitamin C 27.5.2.10.2 Vitamin D 27.5.2.10.3 Vitamin A 27.5.2.10.4 Zinc 27.5.3 Other nutraceutical sources with antiviral properties 27.5.3.1 Honey 27.5.3.2 Bee propolis 27.5.3.3 Seed storage proteins 27.5.3.3.1 Glutenins 27.5.3.3.2 Prolamins 27.5.3.3.3 Mechanisms of antiviral activity of seed storage proteins 27.5.3.4 Yogurt and lactoferrin 27.6 Conclusion References IV. Others 28 In vitro and in vivo approaches for evaluating antiviral efficacy 28.1 Introduction 28.1.1 Antiviral activity 28.2 In vitro approaches 28.2.1 Cell-based assays 28.2.1.1 Antiviral assay by cytopathic effect 28.2.1.2 Plaque reduction assay 28.2.1.3 Hemagglutination inhibition assay 28.2.1.4 Cell-based immunodetection assay 28.2.2 Biochemical assays 28.2.3 Neuraminidase inhibition assay 28.3 In vivo assays approaches 28.3.1 Coronavirus (SARS-CoV-2) 28.3.2 Herpes virus 28.3.3 Influenza virus 28.3.4 Human immunodeficiency virus 28.3.5 Hepatitis B virus 28.4 Conclusion References 29 Clinical Trials and Regulatory considerations of Antiviral agents Abbreviations 29.1 Introduction 29.2 Classification of antiviral agents 29.3 Clinical trials and Food and Drug Administration in the development of antiviral agents 29.4 The US regulator (Food and Drug Administration) 29.5 Applications submitted to division of antiviral products (US FDA) 29.5.1 Investigational new drug application 29.5.2 New drug application 29.5.3 Abbreviated new drug application 29.6 Clinical trials and Food and Drug Administration recommendations for antiherpes viral drugs 29.6.1 Drugs against cytomegalo viral infections 29.6.2 Drugs against herpes simplex virus infections 29.6.3 Drugs against Kaposis sarcoma infections 29.6.4 Drugs against Epstein–Barr viral infections 29.7 Clinical trials and Food and Drug Administration recommendations for anti-HIV drugs 29.7.1 Doravirine 29.7.2 Dolutegravir 29.8 Clinical trials and Food and Drug Administration recommendations for Antiinfluenza viral drugs 29.8.1 Baloxavir marboxil 29.8.2 Oseltamivir 29.8.3 ARMS-1 (A patented formulation) 29.8.4 Cocoa-based plant extracts 29.9 Clinical trials and Food and Drug Administration recommendations for Antihepatitis viral drugs 29.9.1 Drugs against hepatitis B infections 29.9.2 Drugs against hepatitis C infections 29.9.3 Drugs against hepatitis D infections 29.10 Clinical trials of herbal molecules as antiviral agents 29.11 Conclusions and future prospects References 30 Future perspectives of antiviral therapy 30.1 Introduction 30.2 General classification of antiviral drugs 30.2.1 Direct-acting antiviral compounds 30.2.2 Host acting antiviral compounds 30.2.3 Small molecules and large molecules 30.2.4 Mono and combination drug therapy 30.2.5 Polymerase inhibitors 30.2.6 Reverse transcriptase inhibitors 30.2.7 Protease inhibitors 30.2.8 Integrase inhibitors 30.2.9 Nonstructural protein 5A inhibitors 30.3 Problems and limitations in antiviral drugs 30.3.1 Resistance shown after long-term use of antivirals 30.3.2 Toxicity and immunosupression 30.3.3 Viral latency 30.3.4 Time-consuming, tedious, and associated with risks 30.4 Modern perspectives in the development approaches of antivirals 30.4.1 The antisense approach 30.4.2 The aptameric approach 30.4.3 The ribozyme approach 30.4.4 The CRISPR/Cas9 approach 30.4.5 The technological shift in the omics era 30.5 Conclusion References Index Back Cover