دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 3
نویسندگان: Balakumar Balachandran. Edward B. Magrab
سری:
ISBN (شابک) : 1108427316, 9781108427319
ناشر: Cambridge University Press
سال نشر: 2018
تعداد صفحات: 750
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 46 مگابایت
در صورت تبدیل فایل کتاب Vibrations به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب ارتعاشات نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این نسخه جدید توضیح می دهد که چگونه می توان از ارتعاشات در طیف گسترده ای از برنامه ها استفاده کرد و چگونه می توان با چالش های پیش روی مهندسان و طراحان سیستم مواجه شد. متن سیستم های خطی و غیرخطی را ادغام می کند و حوزه زمان و حوزه فرکانس، پاسخ به تحریکات هارمونیک و گذرا و مدل های سیستم گسسته و پیوسته را پوشش می دهد. بر مدلسازی، تحلیل، پیشبینی و اندازهگیری تمرکز دارد تا درک کاملی از پدیدههای ارتعاشی فیزیکی و ارتباط آنها با طراحی مهندسی ارائه دهد. دانش از طریق مثالهای متعدد با کاربردهای دنیای واقعی در طیف وسیعی از رشتهها، دستورالعملهای طراحی دقیق قابل اجرا برای سیستمهای لرزشی مختلف، و بیش از چهل گرافیک تعاملی آنلاین که خلاصهای بصری از رفتارهای سیستم را ارائه میدهد و دانشآموزان را قادر میسازد تا رفتارهای خود را انجام دهند، به کار گرفته میشود. مطالعات پارامتریک برخی از سیزده جدول جدید به عنوان یک مرجع سریع برای مطالعه خود عمل می کنند، ویژگی های کلیدی سیستم های فیزیکی را به تفصیل بیان می کنند و نتایج مهم را خلاصه می کنند. این یک متن ضروری برای دوره های کارشناسی و کارشناسی ارشد در تجزیه و تحلیل ارتعاش، و یک مرجع ارزشمند برای مهندسان شاغل است.
This new edition explains how vibrations can be used in a broad spectrum of applications and how to meet the challenges faced by engineers and system designers. The text integrates linear and nonlinear systems, and covers the time domain and the frequency domain, responses to harmonic and transient excitations, and discrete and continuous system models. It focuses on modeling, analysis, prediction, and measurement to provide a complete understanding of the underlying physical vibratory phenomena and their relevance for engineering design. Knowledge is put into practice through numerous examples with real-world applications in a range of disciplines, detailed design guidelines applicable to various vibratory systems, and over forty online interactive graphics which provide a visual summary of system behaviors and enable students to carry out their own parametric studies. Some thirteen new tables act as a quick reference for self-study, detailing key characteristics of physical systems and summarizing important results. This is an essential text for undergraduate and graduate courses in vibration analysis, and a valuable reference for practicing engineers.
Contents List of Examples List of Interactive Graphics List of Symbols Preface to the Third Edition 1 Introduction 1.1 Introduction 1.2 A Brief History of Vibrations 1.3 About This Book 2 Modeling of Vibratory Systems 2.1 Introduction 2.2 Inertia Elements 2.3 Stiffness Elements 2.3.1 Introduction 2.3.2 Linear Springs 2.3.3 Nonlinear Springs 2.3.4 Other Forms of Potential Energy Elements 2.3.5 Summary of Equivalent Spring Constants 2.4 Dissipation Elements 2.4.1 Viscous Damping 2.4.2 Combinations of Viscous Dampers and Linear Springs 2.4.3 Other Forms of Dissipation 2.5 Model Construction 2.5.1 Introduction 2.5.2 A Few Simple Models 2.5.3 A Microelectromechanical System 2.5.4 The Human Body 2.5.5 A Ski 2.5.6 Cutting Process 2.6 Design for Vibration 2.7 Summary Exercises 3 Single Degree-of-Freedom Systems: Governing Equations 3.1 Introduction 3.2 Force-Balance and Moment-Balance Methods 3.2.1 Force-Balance Methods 3.2.2 Moment-Balance Methods 3.3 Natural Frequency and Damping Factor 3.3.1 Natural Frequency 3.3.2 Damping Factor 3.4 Governing Equations for Different Types of Damping 3.5 Governing Equations for Different Types of Applied Forces 3.5.1 System with Base Excitation 3.5.2 System with Unbalanced Rotating Mass 3.5.3 System with Added Mass Due to a Fluid 3.6 Lagrange’s Equations 3.7 Summary of Natural Frequency Equations for Single Degree-of-Freedom Systems 3.8 Summary Exercises 4 Single Degree-of-Freedom Systems: Free-Response Characteristics 4.1 Introduction 4.2 Free Responses of Undamped and Damped Systems 4.2.1 Introduction: Damping Cases 4.2.2 Free Response of Underdamped Systems: Kelvin–Voigt Model 4.2.3 Free Response of Underdamped Systems: Maxwell Model 4.3 Stability of a Single Degree-of-Freedom System 4.4 Single Degree-of-Freedom Systems with Nonlinear Elements 4.4.1 Nonlinear Stiffness 4.4.2 Nonlinear Damping 4.5 Summary Exercises 5 Single Degree-of-Freedom Systems Subjected to Periodic Excitations 5.1 Introduction 5.2 Response to Harmonic Excitation 5.2.1 Excitation Applied from t = 0 5.2.2 Excitation Present for All Time 5.2.3 Response of Undamped System and Resonance 5.2.4 Magnitude and Phase Information: Mass Excitation 5.2.5 Magnitude and Phase Information: Rotating Unbalanced Mass 5.2.6 Magnitude and Phase Information: Base Excitation 5.2.7 Summary of Results of Sections 5.2.4, 5.2.5, and 5.2.6 5.2.8 Harmonic Excitation of a System with a Maxwell Model 5.3 Response to Excitation with Harmonic Components 5.4 Frequency-Response Function 5.4.1 Introduction 5.4.2 Curve Fitting and Parameter Estimation 5.4.3 Amplitude Response Function and Filter Characteristics 5.4.4 Relationship of the Frequency-Response Function to the Transfer Function 5.4.5 Alternative Forms of the Frequency-Response Function 5.5 Acceleration Measurement: Accelerometer 5.6 Vibration Isolation 5.7 Energy Dissipation and Equivalent Damping 5.8 Influence of Nonlinear Stiffness on Forced Response 5.9 Summary Exercises 6 Single Degree-of-Freedom Systems: Subjected to Transient Excitations 6.1 Introduction 6.2 Response to Impulse Excitation 6.3 Response to Step Input Excitation 6.4 Response to Rectangular Pulse Excitation 6.5 Response to Other Excitation Waveforms 6.5.1 Significance of the Spectral Content of the Applied Force: An Example 6.6 Impact Testing 6.7 Summary Exercises 7 Multiple Degree-of-Freedom Systems: Governing Equations, Natural Frequencies, and Mode Shapes 7.1 Introduction 7.2 Governing Equations 7.2.1 Force-Balance and Moment-Balance Methods 7.2.2 General Form of Equations for a Linear Multi-Degree-of-Freedom System 7.2.3 Lagrange’s Equations of Motion 7.3 Free Response Characteristics 7.3.1 Undamped Systems: Natural Frequencies and Mode Shapes 7.3.2 Natural Frequencies and Mode Shapes: A Summary 7.3.3 Undamped Systems: Properties of Mode Shapes 7.3.4 Characteristics of Damped Systems 7.3.5 Conservation of Energy 7.4 Rotating Shafts on Flexible Supports 7.5 Stability 7.6 Summary Exercises 8 Multiple Degree-of-Freedom Systems: General Solution for Response and Forced Oscillations 8.1 Introduction 8.2 Normal-Mode Approach 8.2.1 General Solution 8.2.2 Response to Initial Conditions 8.3 Response to Arbitrary Forcing and Initial Conditions: Direct Numerical Approach 8.4 Response to Harmonic Forcing and the Frequency-Response Function 8.4.1 Frequency-Response Function 8.5 Vibration Absorbers 8.5.1 Undamped Vibration Absorber 8.5.2 Damped Linear Vibration Absorber 8.5.3 Centrifugal Pendulum Vibration Absorber 8.5.4 Bar Slider System 8.5.5 Pendulum Absorber 8.5.6 Particle Impact Damper 8.5.7 Vibration Absorbers: A Summary 8.6 Vibration Isolation: Transmissibility Ratio 8.7 Systems with Moving Base 8.8 Summary Exercises 9 Vibrations of Beams 9.1 Introduction 9.2 Governing Equations of Motion 9.2.1 Preliminaries from Solid Mechanics 9.2.2 Potential Energy, Kinetic Energy, and Work 9.2.3 Derivation of the Equations of Motion 9.2.4 Beam Equations for a General Case 9.3 Free Oscillations: Natural Frequencies and Mode Shapes 9.3.1 Introduction 9.3.2 General Solution for Natural Frequencies and Mode Shapes for Beams with Constant Cross-Section 9.3.3 Orthogonality of the Mode Shapes 9.3.4 Natural Frequencies and Mode Shapes of Constant Cross-Section Beams Without In-Span Attachments: Effects of Boundary Conditions 9.3.5 Effects of Stiffness and Inertial Elements Attached at an Interior Location 9.3.6 Effects of an Axial Force and an Elastic Foundation on the Natural Frequency 9.3.7 Tapered Beams 9.4 Forced Oscillations 9.5 Summary Exercises Appendices A Preliminaries from Dynamics B Laplace Transform Pairs C Solutions to Ordinary Differential Equations D Matrices E Complex Numbers and Variables F State-Space Formulation G Natural Frequencies and Mode Shapes of Bars, Shafts, and Strings H Evaluation of Eq. (9.120) Answers to Selected Exercises Glossary Index