ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Vibration Control for Building Structures: Theory and Applications (Springer Tracts in Civil Engineering)

دانلود کتاب کنترل ارتعاش برای سازه های ساختمانی: تئوری و کاربردها (تراکت های اسپرینگر در مهندسی عمران)

Vibration Control for Building Structures: Theory and Applications (Springer Tracts in Civil Engineering)

مشخصات کتاب

Vibration Control for Building Structures: Theory and Applications (Springer Tracts in Civil Engineering)

ویرایش:  
نویسندگان:   
سری:  
ISBN (شابک) : 3030407896, 9783030407896 
ناشر: Springer 
سال نشر: 2020 
تعداد صفحات: 677 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 32 مگابایت 

قیمت کتاب (تومان) : 29,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 12


در صورت تبدیل فایل کتاب Vibration Control for Building Structures: Theory and Applications (Springer Tracts in Civil Engineering) به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب کنترل ارتعاش برای سازه های ساختمانی: تئوری و کاربردها (تراکت های اسپرینگر در مهندسی عمران) نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی درمورد کتاب به خارجی



فهرست مطالب

Preface
Contents
1 Summary
	1.1 Concept and Principle of Structural Vibration Control
		1.1.1 Structure Damping Principle
		1.1.2 Structure Isolation Principle
	1.2 Classification and Basic Performance of Structural Vibration Control Technology
	1.3 Development and Current Situation of Structural Vibration Control
	References
Part I Basic Principle of Structural Vibration Control
2 Basic Principles of Energy Dissipation and Vibration Control
	2.1 Passive Control
		2.1.1 Motion Equation of SDOF System
		2.1.2 Commonly Used Passive Energy Dissipation Dampers
		2.1.3 Motion Equation of Passive Vibration Absorbing Structural System
	2.2 Active and Semi-active Control
		2.2.1 Commonly Used Active and Semi-active Control Strategies
		2.2.2 Motion Equations of Active and Semi-active Vibration Absorbing Systems
		2.2.3 Structural State Equation
		2.2.4 Structural Active Control Algorithm
		2.2.5 Structural Semi-active Control Algorithm
	2.3 Intelligent Control
	2.4 Hybrid Control
	References
3 Basic Principle of Frequency Modulation Vibration Control
	3.1 FM Mass Vibration Control
		3.1.1 Motion Equation of FM Mass Vibration Control System
		3.1.2 Basic Characteristics of FM Mass Vibration Control
		3.1.3 Construction of FM Mass Vibration Control
	3.2 FM Liquid Vibration Control
		3.2.1 Motion Equation of FM Liquid Vibration Control System
		3.2.2 Basic Characteristics of FM Liquid Vibration Control
	References
4 Basic Principle of Structural Isolation
	4.1 Motion Equation of Isolated Structural System
	4.2 Basic Characteristics of Isolated Structural System
		4.2.1 Response Analysis of Isolated Structural System
		4.2.2 Response Characteristics of Isolated Structural System
	4.3 Commonly Used Isolation Devices for Building Structures
		4.3.1 Rubber Isolation System
		4.3.2 Sliding Isolation System
		4.3.3 Hybrid Isolation System
	References
Part II Damping Devices of Building Structures
5 Viscous Fluid Damper
	5.1 Mechanism and Characteristics of Viscous Fluid Damper
		5.1.1 Types and Characteristics of Damping Medium
		5.1.2 Energy Dissipation Mechanism of Viscous Fluid Damper
		5.1.3 Calculation Model of Viscous Fluid Damper
	5.2 Properties and Improvement of Viscous Fluid Materials
		5.2.1 Modification of Viscous Fluid Damping Materials
		5.2.2 Material Property Test of Viscous Fluid
		5.2.3 Test Results and Analysis
	5.3 Research and Development of New Viscous Fluid Damper
		5.3.1 Linear Viscous Fluid Damper
		5.3.2 Nonlinear Viscous Fluid Damper
		5.3.3 Other Viscous Fluid Damping Devices
	5.4 Performance Test of Viscous Fluid Damper
		5.4.1 Maximum Damping Force Test
		5.4.2 Regularity Test of Damping Force
		5.4.3 Test of Loading Frequency Related Performance of Maximum Damping Force
		5.4.4 Test of Temperature Related Performance of Maximum Damping Force
		5.4.5 Pressure Maintaining Inspection
		5.4.6 Fatigue Performance Test
	References
6 Viscoelastic Damper
	6.1 Viscoelastic Damping Mechanism and Characteristics
		6.1.1 Types and Characteristics of Viscoelastic Materials
		6.1.2 Calculation Model of Viscoelastic Damper
	6.2 Properties and Improvement of Viscoelastic Materials
		6.2.1 Inorganic Small Molecule Hybrid, Blending of Rubber and Plastic
		6.2.2 Long Chain Polymer Blending Method
	6.3 Research and Development of New Viscoelastic Damper
		6.3.1 Laminated Viscoelastic Damper
		6.3.2 Cylindrical Viscoelastic Damper
		6.3.3 “5 + 4” Viscoelastic Damping Wall
	References
7 Metal Damper
	7.1 Mechanism and Characteristics of Metal Damping
		7.1.1 Basic Principle of Metal Damper
		7.1.2 Properties of Steel with Low Yield Point
		7.1.3 Type and Calculation Performance of Metal Damper
	7.2 Tension-Compression Type Metal Damper
		7.2.1 Working Mechanism of Buckling Proof Brace
		7.2.2 Research and Development of New Buckling Proof Support
	7.3 Shear Type Metal Damper
		7.3.1 Stress Mechanism of Unconstrained Shear Steel Plate
		7.3.2 Buckling Proof Design of in-Plane Shear Yield Type Energy Dissipation Steel Plate
		7.3.3 Main Performance Parameters of Buckling Prevention Shear Energy Dissipation Plate
		7.3.4 Research and Development of New Shear Metal Damper
	7.4 Bending Metal Damper
		7.4.1 Research and Development of Drum-Shaped Open Hole Soft Steel Damper
		7.4.2 Research and Development of Curved Steel Plate Damper
	References
8 Tuned Damping Device
	8.1 FM Mass Damper
		8.1.1 Rubber Supported TMD
		8.1.2 Suspended TMD
		8.1.3 Integrated Ring Tuned Mass Damper
		8.1.4 Adjustable Stiffness Vertical TMD
		8.1.5 Calculation Model of TMD
	8.2 FM Liquid Damper
		8.2.1 Rectangular FM Liquid Damper
		8.2.2 Circular FM Liquid Damper
		8.2.3 Ring FM Liquid Damper
	References
9 Isolation Bearing of Building Structure
	9.1 High Performance Rubber Isolation Bearing
		9.1.1 Damping Mechanism and Characteristics of Rubber Bearing
		9.1.2 Improved Rubber Isolation Bearing with Low Shear Modulus
		9.1.3 Honeycomb Sandwich Rubber Isolation Bearing
	9.2 Composite Isolation Bearing
		9.2.1 Dish Spring Composite Multi-dimensional Isolation Bearing
		9.2.2 Rubber Composite Sliding Isolation Bearing
	References
10 Other Damping Devices
	10.1 Shape Memory Alloy Damper
		10.1.1 Damping Mechanism and Characteristics of Shape Memory Alloy
		10.1.2 Tension-Compression SMA Damper
		10.1.3 Composite Friction SMA Damper
	10.2 Foam Aluminum Composite Damper
		10.2.1 Preparation of Foam Aluminum Composite Damping Material
		10.2.2 Damping Mechanism and Characteristics of AF/PU Composite Material
		10.2.3 AF/PU Composite Damper
	References
Part III Design Method of Structural Vibration Control
11 Vibration Control Analysis Theory of Building Structure
	11.1 Dynamic Model of Building Structure Damping System
		11.1.1 Dynamic Model of Energy Dissipation Structure System
		11.1.2 Dynamic Model of Frequency Modulation Damping Structure System
		11.1.3 Dynamic Model of Isolated Structure System
	11.2 Analysis Method of Building Structure Vibration Control
		11.2.1 Numerical Analysis Method
		11.2.2 Finite Element Software and Secondary Development
	11.3 Vibration Control Dynamic Test of Building Structure
		11.3.1 Dynamic Test of Energy Dissipation and Damping Structure System
		11.3.2 Dynamic Test of Frequency Modulation Damping Structure System
		11.3.3 Dynamic Test of Isolated Structure System
	References
12 Vibration Control Design Method of Building Structure
	12.1 Performance Level of Building Structure and Quantification
	12.2 Design Method for Energy Dissipation and Vibration Control of Buildings
		12.2.1 General Frame for Energy Dissipation and Vibration Control Design of Buildings
		12.2.2 Viscous Fluid Damping Design of Building Structure
		12.2.3 Metal Damping Design of Building Structure
		12.2.4 Example of Energy Dissipation and Vibration Control Design of Buildings
	12.3 Design Method of Building Frequency Modulation and Vibration Control
		12.3.1 General Frame for Frequency Modulation and Vibration Control Design of Buildings
		12.3.2 Example of Structure Frequency Modulation and Vibration Control Design
	12.4 Design Method of Building Isolation
		12.4.1 Conceptual Design of Building Isolation
		12.4.2 Requirements and Methods of Building Isolation Structure Design
		12.4.3 Design of Isolation Layer
		12.4.4 Example of Building Structure Isolation Design
	References
13 Intelligent Optimization Method of Building Structure Vibration Control
	13.1 General Framework for Intelligent Optimization Design of Building Structure
	13.2 Intelligent Optimization Design of Building Structure Based on Comprehensive Objective Method
		13.2.1 Intelligent Optimization Design of Building Structure Based on Genetic Algorithm
		13.2.2 Intelligent Optimization Design of Building Structure Based on Pattern Search
		13.2.3 Intelligent Optimization Design of Building Structure Based on Hybrid Algorithm
	13.3 Intelligent Optimization Design of Building Structure Based on Pareto Optimization
		13.3.1 NSGA-II Basic Principles
		13.3.2 Intelligent Optimization Design
	References
Part IV Engineering Practice of Vibration Control for Building Structures
14 Vibration Control Engineering Practice for the Multistory and Tall Building Structure
	14.1 High-Rise Office Building 1 in High Intensity Zone (Viscous Fluid Damper, Earthquake)
		14.1.1 Project Overview
		14.1.2 Structural Energy Dissipation Design
		14.1.3 Structural Analysis Model
		14.1.4 Analysis of Structural Shock Absorption Performance
	14.2 Office Building 2 in High Intensity Zone (Viscoelastic Damper, Earthquake)
		14.2.1 Project Overview
		14.2.2 Structural Energy Dissipation Design
		14.2.3 Structural Analysis Model
		14.2.4 Analysis of Structural Seismic Absorption Performance
	14.3 A Middle School Library (Metal Damper, Earthquake)
		14.3.1 Project Overview
		14.3.2 Structural Energy Dissipation Design
		14.3.3 Structural Analysis Model
		14.3.4 Analysis of Structural Shock Absorption Performance
	14.4 Tall Residential Building (Rubber Isolator, Earthquake)
		14.4.1 Project Overview
		14.4.2 Structural Isolation Design
		14.4.3 Analysis of the Isolation Structure
	References
15 Engineering Practice of Vibration Control for Tall Structures
	15.1 Beijing Olympic Tower (Wind Vibration, TMD)
		15.1.1 Project Overview
		15.1.2 Structural Vibration Reduction Design Using TMD
		15.1.3 Structural Analysis Model
		15.1.4 Analysis of Vibration Absorption Performance of the Structure
		15.1.5 Field Test and Analysis
	15.2 Nanjing TV Tower (Wind Vibration, AMD)
		15.2.1 Project Overview
		15.2.2 Structural Vibration Reduction Design Using AMD
		15.2.3 Structural Vibration Reduction Analysis
	15.3 Beijing Olympic Multi-functional Broadcasting Tower (Wind Vibration, TMD+Variable Damping Viscous Damper)
		15.3.1 Project Overview
		15.3.2 Structural Vibration Reduction Design
		15.3.3 Structural Analysis Model
		15.3.4 Analysis of Vibration Absorption Performance of the Structure
		15.3.5 Field Test and Analysis
	15.4 Proposed Hefei TV Tower (Earthquake, Wind Vibration, TMD)
		15.4.1 Project Overview and Analysis Model
		15.4.2 Analysis of Wind-Induced Vibration Response Control
		15.4.3 Analysis of Seismic Response Control
	References
16 Engineering Practice of Vibration Control for Long-Span Structures
	16.1 Beijing Olympic National Conference Center (Pedestrian Load, TMD)
		16.1.1 Project Overview
		16.1.2 Structural Vibration Reduction Design
		16.1.3 Structural Analysis Model
		16.1.4 Analysis of Structural Comfort Control
		16.1.5 On-Site Dynamic Test
	16.2 High-Speed Railway Hub Station (Pedestrian Load, TMD)
		16.2.1 Changsha New Railway Station
		16.2.2 Xi’an North Railway Station
		16.2.3 Shenyang Railway Station
	16.3 Fuzhou Strait International Conference and Exhibition Center (Wind Vibration, TMD)
		16.3.1 Project Overview
		16.3.2 Structural Vibration Reduction Design
		16.3.3 Structural Analysis Model
		16.3.4 Comparative Analysis of Wind-Induced Vibration of the Structure
	References




نظرات کاربران