دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1
نویسندگان: Ernesto Novillo
سری:
ISBN (شابک) : 1032006994, 9781032006994
ناشر: CRC Press
سال نشر: 2021
تعداد صفحات: 380
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 16 مگابایت
در صورت تبدیل فایل کتاب Vibration Control Engineering: Passive and Feedback Systems به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب مهندسی کنترل ارتعاش: سیستم های منفعل و بازخورد نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب مهندسی ارتعاش را در توربوماشینها به کار میگیرد و نصب، نگهداری و بهرهبرداری را پوشش میدهد. این کتاب با یک رویکرد عملی مبتنی بر اصول و فرمولهای نظری روشن، یک راهنمای اساسی برای همه مهندسین حرفهای است که با مسائل ارتعاشی در توربوماشینها سر و کار دارند. مشکلات ارتعاشی در توربینها، فنهای بزرگ، دمندهها و سایر ماشینهای دوار از مشکلات رایج در توربوماشینها هستند. قابل استفاده در صنایعی مانند معدن نفت و گاز، سیمان، داروسازی و مهندسی دریایی، توانایی پیش بینی ارتعاش بر اساس الگوهای طیف فرکانس برای بسیاری از مهندسان حرفه ای ضروری است. در این کتاب، تئوری پشت ارتعاش به وضوح شرح داده شده است، و روشی را ارائه می دهد که به راحتی می توان انتشار ارتعاش را از طریق آن محاسبه کرد. این کتاب با توصیف ارتعاش جانبی و پیچشی و چگونگی تأثیر آن بر یکپارچگی محور توربین، از مکانیک تئوری مواد و فرمولها در کنار روش ماتریس برای ارائه راهحلهای واضح برای مشکلات ارتعاش استفاده میکند. علاوه بر این، نحوه انجام ارزیابی ریسک خستگی ناشی از ارتعاش را شرح می دهد. سایر موضوعات تحت پوشش شامل تکنیک های کنترل ارتعاش، طراحی جاذب های غیرفعال و فعال و پایه های صلب، غیر صلب و Z می باشد. این کتاب برای متخصصانی که با توربوماشینها، سپاه مهندسی نیروی دریایی کار میکنند و کسانی که بر روی استانداردهای ISO 10816 و 13374 کار میکنند مورد توجه قرار خواهد گرفت. همچنین به دانشجویان مهندسی مکانیک که روی ارتعاشات و طراحی ماشین کار میکنند کمک خواهد کرد.
This book applies vibration engineering to turbomachinery, covering installation, maintenance and operation. With a practical approach based on clear theoretical principles and formulas, the book is an essential how-to guide for all professional engineers dealing with vibration issues within turbomachinery. Vibration problems in turbines, large fans, blowers, and other rotating machines are common issues within turbomachinery. Applicable to industries such as oil and gas mining, cement, pharmaceutical and naval engineering, the ability to predict vibration based on frequency spectrum patterns is essential for many professional engineers. In this book, the theory behind vibration is clearly detailed, providing an easy to follow methodology through which to calculate vibration propagation. Describing lateral and torsional vibration and how this impacts turbine shaft integrity, the book uses mechanics of materials theory and formulas alongside the matrix method to provide clear solutions to vibration problems. Additionally, it describes how to carry out a risk assessment of vibration fatigue. Other topics covered include vibration control techniques, the design of passive and active absorbers and rigid, non-rigid and Z foundations. The book will be of interest to professionals working with turbomachinery, naval engineering corps and those working on ISO standards 10816 and 13374. It will also aid mechanical engineering students working on vibration and machine design.
Cover Half Title Title Page Copyright Page Dedication Table of Contents Preface Acknowledgements About the Author Abbreviations Part I: Vibration Theory of Sdof, Mdof and Continuous Dynamic Systems Chapter 1: Dynamics of Linear SDOF Systems 1.1 Introduction to Machine’s Vibration 1.2 The Basics of Vibrating Systems 1.2.1 Time Response 1.2.1.1 Transient Response Classification 1.2.2 Frequency Response 1.2.3 Vibration Graphical Representation 1.2.3.1 Resonance 1.2.4 Friction Damping 1.2.5 Vibration Causes and Consequences 1.3 Linear Mechanical System Description 1.4 Equation of Motion of Dynamic Systems 1.4.1 Vector Interpretation of the Equation of Motion 1.5 Natural frequency 1.5.1 The Natural Frequency of Linear Systems 1.5.2 The Natural Frequency of Rotating Systems 1.6 Natural Response of Second-Order Systems 1.7 Derivation of the Time Natural Response 1.7.1 Damping Ratio and Damped Frequency 1.7.2 Natural Transient Response Formula 1.7.3 Vector Interpretation of the Natural Time Response 1.7.4 Concepts to Remember Regarding Second-Order Systems 1.7.5 Natural Response and Decay Curves 1.7.5.1 Settling Time and Number of Cycles 1.7.5.2 Decay Ratio 1.7.5.3 The First Peak Time 1.7.5.4 Practical Assessment of Time Parameters 1.8 Transient Response to a Step Force Input 1.8.1 Conceptual Description 1.8.2 Transient Response Formula 1.8.2.1 Equation of Motion for a Step Input Force 1.8.2.2 Natural Response to a Step Input 1.8.3 Transient Response Overshoots to a Unit Step Input 1.9 Transient Response to a Harmonic Force Input 1.9.1 Conservative Vibrating System 1.9.1.1 Resonance of the Forced Response 1.9.2 Non-Conservative Vibrating System 1.9.2.1 Permanent Forced Response 1.9.2.2 Total Vibration 1.9.3 Practical Assessment of a Transient Response 1.9.3.1 Technical Assessment Summary 1.10 Frequency Response 1.10.1 Frequency Response of Second-Order Systems 1.10.2 Frequency Response Charts of Second-Order Systems 1.10.3 Resonance Parameters 1.11 Fundamental vibration forms 1.11.1 Externally Excited Mode 1.11.2 Self-Excited Mode 1.11.2.1 Note About the Recommended Velocities Range 1.11.3 Base-Excited Form 1.11.4 Transmitted Force Mode 1.11.5 Comparison of the Four Fundamental Vibration Forms Notes Chapter 2: Dynamics of Rotating SDOF Systems 2.1 Introduction to Torsional Vibration 2.2 Torsional Vibration of SDOF Systems 2.2.1 Torsional System Response 2.2.1.1 Natural Frequency of Rotating Systems 2.2.1.1.1 Natural Frequency of a Rotor-Shaft Assembly 2.2.1.2 Damping Ratio ζ 2.2.2 Transient Response With a Step Torque Input 2.2.2.1 Torsional Natural Response 2.2.2.2 Transient Response to a Step Torque 2.2.3 Velocity Transient of a Turbine-Generator Set 2.2.4 Frequency Response 2.2.5 Torsional Stress Under Vibration 2.2.6 Cumulative Fatigue Generated by Turbomachines Startup 2.2.7 Multidisciplinary Assessment of Torsional Vibration 2.2.7.1 Technical Scenario 2.2.7.2 Calculation Model 2.2.7.3 Technical Summary Notes Chapter 3: Dynamics of Linear and Rotating MDOF and Continuous Systems 3.1 Introduction to MDOF and Continuous Systems 3.1.1 Discrete Multi-Degree of Freedom Systems 3.1.2 Continuous Systems 3.1.2.1 Stress Waves and Propagation Velocity 3.2 Linear Multi-Degree of Freedom Systems 3.2.1 Matrix Model of Multi-Degree Systems 3.2.2 Natural Frequencies of a System with Three Degrees of Freedom 3.3 Rotating Multi-Degree of Freedom Systems 3.3.1 Natural Frequencies of Two Degrees of Freedom System 3.3.2 Practical Assessment of Natural Frequencies 3.4 The Euler-Bernoulli Equation 3.4.1 Deflections and Efforts at Beam’s Supports 3.4.1.1 Boundary Conditions at Beam Supports 3.4.2 Derivation of the Euler-Bernoulli Equation 3.4.3 Solution to the Euler-Bernoulli Equation 3.4.3.1 Solution to the Spatial Equation 3.4.3.2 Beam’s Vibration Shapes 3.4.3.3 Solution to the Temporal Equation 3.4.3.4 General Solution of the Euler-Bernoulli Equation 3.4.4 Natural Frequencies with the Euler-Bernoulli Equation 3.4.5 Practical Assessment. Turbogenerator Set Frequencies 3.5 The Wave Equation 3.5.1 Derivation of the Wave Equation 3.5.2 Solution to the Wave Equation 3.5.2.1 Solution to the Spatial Equation 3.5.2.2 Solution to the Temporal Equation 3.5.2.3 General solution of the wave equation 3.5.3 Torsional Natural Frequencies With the Wave Equation 3.5.4 Practical Assessment. Oil Drill Rig Notes Part II: Turbo Machines and Ship Vibrations Chapter 4: Critical Velocity of Turbomachines 4.1 Introduction to the Critical Velocity 4.1.1 Calculation and Measurement of the Resonant Frequency 4.1.2 Type of Rotors 4.2 Rayleigh-Ritz Method 4.2.1 Critical Velocity Versus Static Deflection 4.2.2 A Practical Determination of Critical Velocity 4.2.3 Stepped Shafts 4.3 Dunkerley Method 4.3.1 Turbomachines With More than One Wheel 4.4 Critical Velocity Assessment. Example 4.5 Rotor Balancing 4.5.1 Conceptual Introduction to Balancing 4.5.2 Causes of an Unbalanced Rotor 4.5.3 Static Balancing 4.5.4 Dynamic Balancing 4.5.4.1 Dynamically Unbalanced Rotor 4.5.4.2 Balancing Masses Calculation 4.5.5 Balancing Machine Notes Chapter 5: Lateral Vibration of Turbomachines 5.1 Introduction to Lateral Vibration 5.2 Lateral Vibration Formulas 5.3 Centrifugal Deflection 5.4 Gyration Radius Frequency Response 5.4.1 Deflections and Gyration Radius at Singular Angles ϑ 5.5 Natural Frequency Versus Deflection 5.5.1 Correction by the Rotor Mass 5.5.2 Calculation of Shaft Deflection 5.6 Natural Frequency Versus Stress Propagation Velocity 5.6.1 Shaft Lateral Resonance in Power Plants Notes Chapter 6: Vibratory Forces in Turbomachines 6.1 Introduction to Vibratory Forces 6.2 Forces on Blades and Bearings 6.3 Radial Vibratory Forces 6.3.1 Assessment of Radial Vibratory Forces 6.3.2 Technical Scenario and Assessment Request 6.4 Vertical and Horizontal Vibratory Forces 6.4.1 Horizontal Vibratory Force 6.4.1.1 Maximum Horizontal Force 6.4.2 Assessment of Vibratory Forces on Pedestals 6.5 Frequency Response of Vibratory Forces 6.5.1 Frequency Response of the Vertical Force 6.5.2 Frequency Response of the Horizontal Force 6.6 Blade Subject to Impulse Force 6.6.1 Example of Centrifugal Force on a Blade 6.6.2 Vibration Produced by the Flow Impact on Blades 6.6.3 Assessment of Blades Resonance Risk 6.7 Rotor-Shaft Subject to Pulsating Torque Notes Chapter 7: Ship’s Oscillation and Vibration 7.1 Introduction to Ships 7.2 Ship’s Propulsion System 7.3 Ship’s Motions and Oscillation 7.3.1 Ship’s Transversal Oscillation 7.3.1.1 Roll’s Natural Frequency 7.3.2 Ship’s Longitudinal Oscillation 7.3.3 Ship’s Equation of Motion 7.3.4 Absorption of Ship’s Oscillations 7.3.4.1 Anti-Roll Tanks 7.3.4.2 Bilge Keels and Stabilizer Fins 7.4 Ship’s Mechanical Vibration 7.4.1 Longitudinal Vibration Excited by the Propeller 7.4.2 Isolation of Longitudinal Vibration 7.4.3 Isolation of Shaft Torsional Vibration 7.4.4 Diesel Motors Excitation 7.5 Beam Ship Vibration 7.5.1 Beam-Ship Natural Frequencies 7.5.1.1 Natural Frequencies by Euler-Bernoulli Equation 7.5.1.2 Hull Girder’s Natural Frequencies 7.5.2 The Hull Resonance Diagram 7.5.3 Finite Element Method. Brief Description 7.5.3.1 Ship’s Deformation by Torsional Torques 7.5.4 Vibration Tolerance Standards Notes Part III: Vibration Control Systems Chapter 8: Vibration Isolation 8.1 Introduction to Transmissibility of Foundations 8.2 Transmissibility of Rigid Foundation 8.2.1 Mechanical Impedance Definition 8.2.2 Transmissibility Ratio 8.2.3 Spring-Damper Set Design 8.2.4 Practical Assessment of Transmissibility Attenuation. Perfectly Rigid Foundation 8.3 Transmissibility of a Non-Rigid Foundation of Known Mass 8.3.1 The Undamped Non-Rigid Foundation of Known Mass 8.3.1.1 Vibration Amplitude Ratios 8.3.2 Isolator design 8.3.2.1 Practical Assessment of Spring Rigidity for a Non-Rigid Foundation 8.4 Transmissibility of Off-Land Z Foundation 8.4.1 Frequency Response Test of a Z Foundation 8.4.1.1 Frequency Response With No Resonance Peak 8.4.1.2 Frequency Response With Resonance Peak 8.4.2 Impedances Calculation of a Z Foundation 8.4.2.1 Z Model of First-Order 8.4.2.2 Z model of Second-Order 8.4.2.3 Frequency Response Curve with No Peak (ζ>0.707) 8.4.2.4 Frequency Response Test with Peak (ζ<0.707) 8.4.3 Example of Spring Calculation to Isolate a Z Foundation Notes Chapter 9: Vibration Absorption 9.1 Introduction to Vibration Absorption 9.2 Vibration Absorbers for Rotating Machines 9.2.1 Conceptual Description of Frahm’s Absorber 9.3 Frahm’s Absorber Model 9.3.1 Equations of Motion 9.3.1.1 Machine and Absorber Vibration Amplitude 9.3.1.2 Vibration Absorption Condition 9.3.2 Example of Forces in a Machine-Absorber Assembly 9.3.2.1 Forces With a Tuned Absorber 9.3.2.2 Forces With an Untuned Absorber 9.3.3 Frequency Response of Machine-Absorbers 9.3.3.1 Definition of Non-Dimensional Variables and Parameters 9.3.3.2 Vibration Amplitudes and Frequency Response 9.3.3.3 Resonant Frequencies 9.3.4 Frahm’s Absorber Design and Performance 9.3.4.1 Frequency Difference to Resonance (FDTR) 9.3.4.2 Absorber Design Procedure 9.3.4.3 Mass Ratio Determination 9.3.4.4 Tuning Error 9.3.4.5 Tolerance to the Frequency Deviation 9.3.5 Damped Absorption 9.3.5.1 Conceptual Description 9.3.5.2 Equations of Motion 9.3.5.3 Derivation of Impedance Ratios z 9.3.5.4 Den Hartog\'s Method 9.3.6 Practical Assessment of a Fan Vibration Neutralization 9.3.6.1 Scenario 9.3.6.2 Undamped Absorber Design 9.3.6.3 Damped Absorber Design 9.4 Absorption of Overhead Lines Vibration 9.4.1.1 Example of Force Produced by Karman Vortices 9.4.2 Stockbridge Absorbers Notes Chapter 10: Vibration Control Techniques 10.1 Introduction to Techniques to Reduce Vibration 10.2 Control Vibration Philosophy 10.3 Techniques General Procedure 10.3.1 Scenario Description 10.3.2 General Calculation Procedure 10.3.2.1 Initial Scenario. Point 1 Calculation 10.3.2.2 Final Scenario. Point 2 Calculation 10.3.2.3 Design Ratios 10.3.2.4 Example of the General Procedure Applied to the Four Fundamental Vibration Forms 10.3.3 Description of the Seven Basic Techniques 10.3.3.1 Technique 1. Externally-Excited Machine 10.3.3.2 Technique 2. Self-Excited Machine 10.3.3.3 Techniques 3 and 4. Base-Excited and Force Transmitted Machine 10.4 Predicting and Preventing Harmful Vibrations 10.4.1 Admissible Vibration Amplitude 10.4.1.1 Turbomachine Rotor 10.4.1.2 Machine Case and Bearings Cap Notes Chapter 11: Feedback Control Techniques 11.1 Introduction to Feedback Control Techniques 11.1.1 Main Definitions of Feedback Control Theory 11.2 Control Systems Basics 11.2.1 Closed-Loop Systems 11.3 Time Response of Linear Systems 11.4 Control Actions in Closed-Loop Systems 11.4.1 Proportional Control Action 11.4.1.1 Error with a P Controller 11.4.1.2 Time Response With a P Controller What Changes Does the Adjustable Gain of the P cController Produce? 11.4.2 Proportional Plus Integral Control Action 11.4.2.1 Error With a PI Controller 11.4.3 Proportional Plus Derivative Action 11.4.4 PID Control Action 11.5 Closed-Loop Stability 11.5.1 Absolute Stability Determination 11.5.1.1 Numerical Determination of the Absolute Stability 11.5.2 Relative Stability Determination 11.6 Controller Settings Calculation 11.6.1 Ziegler-Nichols Tuning Methods 11.6.1.1 Ziegler-Nichols Method Based on the S Reaction Curve Example of Controller’s Setting Calculation Based on the S Reaction Curve 11.6.1.2 Ziegler-Nichols Method Based on Ultimate Dynamic Gain and Frequency Example of Controller’s Setting Calculation Based on Ultimate Gain and Period 11.7 Active Vibration Control 11.7.1 Design of Active Control for a Vibrating Structure 11.7.1.1 Converting the Transfer Function to Obtain the Frequency Response 11.7.1.2 Frequency Response 11.7.1.3 Controller\'s Design 11.7.2 Absorption of Ship\'s Roll Bibliography about Feedback Control Systems Books Classical Papers Based on the Frequency Response Notes Index