دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1
نویسندگان: Hamid Reza Karimi (editor)
سری: Emerging Methodologies and Applications in Modelling, Identification and Control
ISBN (شابک) : 0128211946, 9780128211946
ناشر: Academic Press
سال نشر: 2020
تعداد صفحات: 398
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 42 مگابایت
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Vibration Control and Actuation of Large-Scale Systems به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب کنترل و فعال سازی لرزش سیستم های مقیاس بزرگ نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
کنترل ارتعاش و فعالسازی سیستمهای مقیاس بزرگ توصیفی سیستماتیک و مستقل از بسیاری از جنبههای پیشبینی، طراحی، پیادهسازی یا کاوش آزمایشی سیستمهای کنترل ارتعاش پیشرفته را ارائه میدهد. این کتاب به توسعه روشهای ریاضی برای تجزیه و تحلیل ارتعاش و مشکلات کنترل سیستمهای مقیاس بزرگ، از جمله دینامیک ساختاری، دینامیک خودرو و توربینهای بادی، اختصاص داده شده است. مشکلات تحقیقی که در هر فصل به آنها پرداخته شده است، انگیزه خوبی دارد، با نتایج عددی و شبیه سازی در هر فصل ارائه شده است که نشان دهنده بهترین عملکرد مهندسی است.
Vibration Control and Actuation of Large-Scale Systems gives a systematically and self-contained description of the many facets of envisaging, designing, implementing, or experimentally exploring advanced vibration control systems. The book is devoted to the development of mathematical methodologies for vibration analysis and control problems of large-scale systems, including structural dynamics, vehicle dynamics and wind turbines, for example. The research problems addressed in each chapter are well motivated, with numerical and simulation results given in each chapter that reflect best engineering practice.
Cover VIBRATION CONTROL AND ACTUATION OF LARGE-SCALE SYSTEMS Copyright Contributors Preface Analysis of vibration signals Introduction Vibration process Frequency-frequency analysis Analysis of vibration process based on F-F image Analysis of vibrations caused by a unbalanced forces of kinematic origin Analysis of vibration acceleration of the housing of a 3-phase asynchronous slip-ring motor with p=2 pole pairs Analysis of vibration acceleration of the housing of a 3-phase synchronous motor with p=2 salient pole pairs Analysis of vibration acceleration of the housing of a 3-phase induction motor with p=1 pole pair Analysis of vibrations caused by unbalanced forces of electromagnetic origin Analysis of the operating condition of a 3-phase low-speed vertical squirrel cage induction motor with p=3 pole pa ... Analysis of the slow-running 3-phase PMSM with an external rotor with p=17 pole pairs, Ns=36 stator teeth and Nr=3 ... Analysis of 4-phase SRM operating as a generator with Ns=8 salient stator poles and Nr=6 salient rotor teeth Conclusions References Implicit resonances in time-delayed nonlinear systems Introduction Distinct dynamic behavior Key research issues for time-delayed nonlinear systems Analytical and numerical methods Resonant Hopf bifurcations and coexisting bifurcating solutions Implicit resonances in time-delayed nonlinear systems Explicit resonances in conventional nonlinear systems Implicit resonances in time-delayed nonlinear systems Two coexisting families of implicit resonances Different families of resonances Coexisting superharmonic resonances Coexisting subharmonic resonances Coexisting additive resonances Conclusions References Vibration suppression of force controllers using disturbance observers Introduction to force vibrations Conventional motion systems Observers for motion control Observing the disturbances Disturbance observer for a DC motor Reaction torque observer (RTOB) Effects of vibrations in force control Force control topology Conventional torque control for motors RTOB as force sensor Isolating vibration effects using the DOB Simulation results Hardware implementation Parameter estimation for DC motor-based force actuators Motor torque constant Kt estimation Estimation of static friction constant τfric and coefficient of viscous friction B Estimation of system inertia (J) Experimental setup Setup configurations and the results Conclusions References Low-complexity controller for active vibration damping of thin mechanical structures Introduction System description Modeling of the piezo-actuated beam Problem statement Quasipolynomial-based controller design Application to the vibration control Conclusion Acknowledgments References Vibration protection of cultural heritage objects Introduction The designed isolator Experimental results for the full-scale structure Mathematical model Simplified model Expanding the model Frequency response functions Passive vibration control design Inerters The isolating system with TMDIs in y-direction Equations of motion in presence of TMD Effect of the TMDIs on the response of the system Optimization of tuning parameters Objective functions Using inerters in the suspension system Inerters in the vertical direction Inerters in the horizontal direction Experimental tests using manufactured inerter Introduction Manufactured scaled structure Laboratory tests on the scaled model Description of the test setup Updating the scaled structure's model Introducing inerter to scaled structure Manufactured inerter Experimental results Conclusions Appendix 1 Appendix 2 Appendix 3 Appendix 4 Acknowledgments References Static output-feedback vibration control of seismically excited buildings: An effective multistep approach Introduction Building model Second-order dynamical model First-order state-space model Controlled-output variables and closed-loop model H controller design State-feedback controller Static output-feedback controller Iterative design procedure Numerical results Controller design and frequency-response functions Seismic time response Conclusions Appendix References Finite-time vibration control for vehicle active suspension systems Introduction System description and preliminaries System description Preliminaries Finite-time state feedback control for suspension systems Problem statements Design of the finite-time controller Comparative experimental studies Finite-time output feedback control for suspension systems Problem statements Main results Comparative experimental studies Conclusions References Robust adaptive parameter estimation and control for vehicle active suspension systems Introduction Problem formulation Adaptive suspension control design for vertical displacement Adaptive control design Novel adaptive law Stability analysis Comparison with other adaptations Gradient method σ-Modification method Proposed method Adaptive suspension control for pitch motion Suspension performance analysis Simulations Conclusions References Observer-based robust H vibration control of a half-car active suspension system: A finite-time approach Introduction System formulation System description Main definitions and lemmas Main results FTS analysis Finite-time H performance index analysis The solution of the vibration controller and observer gains Simulation result Conclusion Acknowledgments References Vibration control of a negative stiffness mechanism-based semiactive seat suspension system Introduction Seat suspension system with negative stiffness spring NSMS Controllable rotary damper System test and model identification Controller design and road input profile generation Evaluation Summary References Robust fault-tolerant H control of seat suspension systems with quantization Introduction Problem formulation Main results Quantized static output-feedback controller design Quantized fault-tolerant controller design Simulation Conclusion References The effects of bending moments on the dynamics of a wind turbine planetary gearbox Introduction Mathematical modeling of gearbox components The results of numerical simulations Driving torque only Combined loading of driving torque and bending moment with My/Tin=0.5 Combined loading of driving torque and bending moment with My/Tin=1 Combined loading of driving torque and bending moment with My/Tin=5 Under My/Tin=1 with increasing driving torque and bending moment Effects of the bearing clearance Conclusion References Design of small wind turbine structure with optimized response in frequency domain Introduction Mechanical design Preliminary design Prototype of the turbine Validation of Fe modeling Model testing Validation of the FE model Optimization of the DAWT Finite element modeling Optimization of turbine structure Conclusions Acknowledgments References Index Back Cover