دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [Second ed.]
نویسندگان: Robert Bond Randall
سری:
ISBN (شابک) : 9781119477631, 1119477654
ناشر:
سال نشر: 2022
تعداد صفحات: [451]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 26 Mb
در صورت تبدیل فایل کتاب Vibration-based condition monitoring : industrial, automotive and aerospace applications به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب نظارت بر وضعیت مبتنی بر ارتعاش: کاربردهای صنعتی، خودرویی و هوافضا نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Cover Title Page Copyright Contents Foreword About the Author Preface to The Second Edition About the Companion Website Chapter 1 Introduction and Background 1.1 Introduction 1.2 Maintenance Strategies 1.3 Condition Monitoring Methods 1.3.1 Vibration Analysis 1.3.2 Oil Analysis 1.3.3 Performance Analysis 1.3.4 Thermography 1.4 Types and Benefits of Vibration Analysis 1.4.1 Benefits Compared with Other Methods 1.4.2 Permanent vs Intermittent Monitoring 1.5 Vibration Transducers 1.5.1 Absolute vs Relative Vibration Measurement 1.5.2 Proximity Probes 1.5.3 Velocity Transducers 1.5.4 Accelerometers 1.5.5 Dual Vibration Probes 1.5.6 Laser Vibrometers 1.6 Torsional Vibration Transducers 1.6.1 Shaft Encoders 1.6.2 Torsional Laser Vibrometers 1.7 Condition Monitoring – The Basic Problem 1.7 References Chapter 2 Vibration Signals from Rotating and Reciprocating Machines 2.1 Signal Classification 2.1.1 Stationary Deterministic Signals 2.1.2 Stationary Random Signals 2.1.3 Cyclostationary Signals 2.1.4 Cyclo‐non‐stationary Signals 2.2 Signals Generated by Rotating Machines 2.2.1 Low Shaft Orders and Subharmonics 2.2.2 Vibrations from Gears 2.2.3 Rolling Element Bearings 2.2.4 Bladed Machines 2.2.5 Electrical Machines 2.3 Signals Generated by Reciprocating Machines 2.3.1 Time‐Frequency Diagrams 2.3.2 Torsional Vibrations 2.3 References Chapter 3 Basic Signal Processing Techniques 3.1 Statistical Measures 3.1.1 Probability and Probability Density 3.1.2 Moments and Cumulants 3.2 Fourier Analysis 3.2.1 Fourier Series 3.2.2 Fourier Integral Transform 3.2.3 Sampled Time Signals 3.2.4 The Discrete Fourier Transform (DFT) 3.2.5 The Fast Fourier Transform (FFT) 3.2.6 Convolution and the Convolution Theorem 3.2.7 Zoom FFT 3.2.8 Practical FFT Analysis 3.3 Hilbert Transform and Demodulation 3.3.1 Hilbert Transform 3.3.2 Demodulation 3.4 Digital Filtering 3.4.1 Realisation of Digital Filters 3.4.2 Comparison of Digital Filtering with FFT Processing 3.5 Time/Frequency Analysis 3.5.1 The Short Time Fourier Transform (STFT) 3.5.2 The Wigner‐Ville Distribution 3.5.3 Wavelet Analysis 3.5.4 Empirical Mode Decomposition 3.6 Cyclostationary Analysis and Spectral Correlation 3.6.1 Spectral Correlation 3.6.2 Spectral Correlation and Envelope Spectrum 3.6.3 Wigner‐Ville Spectrum 3.6.4 Cyclo‐non‐stationary Analysis 3.6 References Chapter 4 Fault Detection 4.1 Introduction 4.2 Rotating Machines 4.2.1 Vibration Criteria 4.2.2 Use of Frequency Spectra 4.2.3 CPB Spectrum Comparison 4.3 Reciprocating Machines 4.3.1 Vibration Criteria for Reciprocating Machines 4.3.2 Time/Frequency Diagrams 4.3.3 Torsional Vibration 4.3 References Chapter 5 Some Special Signal Processing Techniques 5.1 Order Tracking 5.1.1 Comparison of Methods 5.1.2 Computed Order Tracking (COT) 5.1.3 Phase Demodulation Based COT 5.1.4 COT Over a Wide Speed Range 5.2 Determination of Instantaneous Machine Speed 5.2.1 Derivative of Instantaneous Phase 5.2.2 Teager Kaiser and Other Energy Operators 5.2.3 Comparison of Time and Frequency Domain Approaches 5.2.4 Other Methods 5.3 Deterministic/Random Signal Separation 5.3.1 Time Synchronous Averaging 5.3.2 Linear Prediction 5.3.3 Adaptive Noise Cancellation 5.3.4 Self Adaptive Noise Cancellation 5.3.5 Discrete/Random Separation (DRS) 5.4 Minimum Entropy Deconvolution 5.5 Spectral Kurtosis and the Kurtogram 5.5.1 Spectral Kurtosis – Definition and Calculation 5.5.2 Use of SK as a Filter 5.5.3 The Kurtogram 5.5 References Chapter 6 Cepstrum Analysis Applied to Machine Diagnostics 6.1 Cepstrum Terminology and Definitions 6.1.1 Brief History of the Cepstrum and Terminology 6.1.2 Cepstrum Types and Definitions 6.2 Typical Applications of the Real Cepstrum 6.2.1 Practical Considerations with the Cepstrum 6.2.2 Detecting and Quantifying Harmonic/Sideband Families 6.2.3 Separation of Forcing and Transfer Functions 6.3 Modifying Time Signals Using the Real Cepstrum 6.3.1 Removing Harmonic/Sideband Families 6.3.2 Enhancing/Removing Modal Properties 6.3.3 Cepstrum Pre‐whitening 6.3 References Chapter 7 Diagnostic Techniques for Particular Applications 7.1 Harmonic and Sideband Cursors 7.1.1 Basic Principles 7.1.2 Examples of Cursor Application 7.1.3 Combination with Order Tracking 7.2 Gear Diagnostics 7.2.1 Techniques Based on the TSA 7.2.2 Transmission Error as a Diagnostic Tool 7.2.3 Cepstrum Analysis for Gear Diagnostics 7.2.4 Separation of Spalls and Cracks 7.2.5 Diagnostics of Gears with Varying Speed and Load 7.3 Rolling Element Bearing Diagnostics 7.3.1 Signal Models for Bearing Faults 7.3.2 A Semi‐Automated Bearing Diagnostic Procedure 7.3.3 Alternative Diagnostic Methods for Special Conditions 7.3.4 Diagnostics of Bearings with Varying Speed and Load 7.4 Reciprocating Machine and IC Engine Diagnostics 7.4.1 Time/Frequency Methods 7.4.2 Cylinder Pressure Identification 7.4.3 Mechanical Fault Identification 7.4 References Chapter 8 Fault Simulation 8.1 Background and Justification 8.2 Simulation of Faults in Gears 8.2.1 Lumped Parameter Models of Parallel Gears 8.2.2 Separation of Spalls and Cracks 8.2.3 Lumped Parameter Models of Planetary Gears 8.2.4 Interaction of Faults with Ring and Sun Gears 8.3 Simulation of Faults in Bearings 8.3.1 Local Faults in LPM Gearbox Model 8.3.2 Extended Faults in LPM Gearbox Model 8.3.3 Reduced FE Casing Model Combined with LPM Gear Model 8.4 Simulation of Faults in Engines 8.4.1 Misfire 8.4.2 Piston Slap 8.4.3 Bearing Knock 8.4 References Chapter 9 Fault Trending and Prognostics 9.1 Introduction 9.2 Trend Analysis 9.2.1 Trending of Simple Parameters 9.2.2 Trending of ‘Impulsiveness’ 9.2.3 Trending of Spall Size in Bearings 9.3 Advanced Prognostics 9.3.1 Physics‐Based Models 9.3.2 Data‐Driven Models 9.3.3 Hybrid Models 9.3.4 Simulation‐Based Prognostics 9.4 Future Developments 9.4.1 Advanced Modelling 9.4.2 Advances in Data Analytics 9.4 References A Exercises and Tutorial Questions A.1 Introduction and Background A.1.1 Exam Questions A.2 Vibration Signals from Machines A.2.1 Exam Questions A.3 Basic Signal Processing A.3.1 Tutorial and Exam Questions A.4 Fault Detection A.4.1 Tutorial and Exam Questions A.4.2 Assignment A.6 Cepstrum Analysis Applied to Machine Diagnostics A.6.1 Tutorial and Exam Questions A.7 Diagnostic Techniques for Particular Applications A.7.1 Tutorial and Exam Questions A.7.2 Assignments A.9 Prognostics A.9.1 Tutorial and Exam questions Index EULA