دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [2]
نویسندگان: Petia Radeva. Jasjit S. Suri
سری: IOP Expanding Physics
ISBN (شابک) : 0750319992, 9780750319997
ناشر: IOP Publishing
سال نشر: 2019
تعداد صفحات: 600
[421]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 63 Mb
در صورت تبدیل فایل کتاب Vascular and Intravalcular Imaging Trends, Analysis, and Challenges: Plaque Characterization به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب روندها، تجزیه و تحلیل و چالشهای تصویربرداری عروقی و داخل عروقی: خصوصیات پلاک نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
به عنوان یکی از برجسته ترین بیماری ها در جامعه ما، بیماری قلبی عروقی (CVD) نیاز به تجزیه و تحلیل و بررسی اختصاصی برای کاهش نرخ فزاینده مرگ و میر در سراسر جهان دارد. محققان، مهندسان زیست پزشکی و پزشکان از اطلاعات دقیق این کتاب که درک بهتری از علل، تشخیص و درمان CVD ارائه می دهد، بسیار بهره مند خواهند شد.
As one of the most prominent diseases in our society, Cardio Vascular Disease (CVD) requires dedicated analysis and investigation to reduce the increasing mortality rate worldwide. Scholars, biomedical engineers and medical practitioners will greatly benefit from the detailed information in this book which gives a better understanding of the causes, diagnosis and treatment of CVD.
PRELIMS.pdf Preface Editor biographies Petia Radeva Jasjit S Suri List of contributors CH001.pdf Chapter 1 Coronary and carotid artery calcium detection, its quantification and grayscale morphology-based risk stratification in multimodality big data: a review 1.1 Introduction 1.2 Calcium detection in coronary and carotid arteries 1.2.1 Calcium detection in coronary arteries 1.2.2 Calcium detection in carotid arteries 1.3 Calcium area/volume quantification in coronary and carotid arteries 1.3.1 Calcium area/volume quantification in coronary arteries 1.3.2 Calcium area/volume quantification in carotid arteries 1.4 Metrics for performance evaluation for calcium detection algorithms and its validation 1.4.1 Statistical metrics for performance evaluation 1.4.2 Validation of calcium detection algorithms 1.5 Machine-learning-based risk stratification 1.5.1 Coronary risk assessment using ML-based approaches 1.5.2 Carotid risk assessment using ML-based approaches 1.6 Discussion 1.6.1 A note on the usage of calcium detection techniques in coronary and carotid arteries 1.6.2 A note on the usage of calcium quantification techniques in coronary and carotid arteries 1.6.3 A note on the use of statistical metrics for the evaluation of calcium detection algorithms 1.6.4 A note on feature selection in ML-based risk stratification for the coronary and carotid arteries 1.6.5 Recommended interventions for CVD patients 1.6.6 Atherosclerotic calcium in coronary and carotid imaging: ongoing challenges 1.7 Conclusions Conflict of interest Acknowledgements Funding References CH002.pdf Chapter 2 Risk of coronary artery disease: genetics and external factors 2.1 Introduction 2.2 External factors 2.2.1 Ethnicity and CVD 2.2.2 Environmental factors and CVD 2.2.3 Air pollution and CVD risk 2.2.4 Nutrition and CVD risk 2.2.5 Family history and CVD risk 2.3 Genetics of coronary artery disease 2.3.1 Genetics of atherosclerosis 2.3.2 Genetics of diabetes 2.3.3 Genetics of rheumatoid arthritis 2.3.4 Anatomy of a 3D heart 2.4 Multimodal coronary imaging 2.4.1 Regular coronary artery 2.4.2 Coronary imaging using x-ray angiography 2.4.3 Coronary imaging using magnetic resonance angiography 2.4.4 Imaging coronary CT angiography 2.4.5 Coronary artery interpretation by OCT versus IVUS 2.5 Association of CVD with other prevalent diseases 2.5.1 Relationship between coronary artery and carotid disease 2.5.2 The relationship between diabetes and coronary artery disease 2.5.3 The link between rheumatic arthritis and cardiovascular disease 2.6 Treatments for cardiovascular disease References CH003.pdf Chapter 3 Wall quantification and tissue characterization of the coronary artery 3.1 Introduction 3.2 Physics of image acquisition 3.2.1 Image acquisition using optical coherence tomography 3.2.2 Image acquisition using intravascular ultrasound 3.2.3 Comparison of OCT and IVUS 3.3 Tissue characterization 3.3.1 OCT appearance of plaque tissues 3.3.2 Schools of thought on tissue characterization 3.3.3 Characterization using optical properties 3.3.4 Characterization using machine learning 3.3.5 Tissue characterization using deep learning 3.4 A link between carotid and coronary artery disease 3.4.1 Carotid intima–media thickness and CAD 3.4.2 Carotid plaque and CAD 3.4.3 Coronary IMT and carotid atheroma for CAD risk detection 3.4.4 Femoral and carotid IMT for CAD risk detection 3.4.5 Coronary calcium and carotid risk factors for risk detection 3.5 Wall quantification 3.5.1 Lumen measurement 3.5.2 Vessel wall measurement 3.5.3 Fibrous cap measurement 3.5.4 Measurement of calcium 3.5.5 Quantification of macrophages 3.5.6 The role of image registration 3.6 Risk assessment systems 3.7 Discussion 3.7.1 Benchmarking 3.7.2 A note on image acquisition hardware 3.7.3 A note on plaque component quantification 3.7.4 Validation of plaque characterization techniques 3.7.5 A note on the future of OCT 3.8 Conclusion Appendix A A.1 Clinical trials References CH004.pdf Chapter 4 Rheumatoid arthritis: its link to atherosclerosis imaging and cardiovascular risk assessment using machine-learning-based tissue characterization 4.1 Introduction 4.2 Search strategy 4.3 Brief description of the pathogensis of rheumatoid arthritis 4.4 Atherosclerosis driven by rheumatoid arthritis 4.5 The role of platelets in atherothrombosis in RA 4.6 The role of amyloidosis in RA 4.7 Traditional CV risk factors in rheumatoid arthritis 4.7.1 Body mass index and physical inactivity 4.7.2 Lipids 4.7.3 Hypertension 4.7.4 Smoking 4.7.5 Insulin resistance and diabetes 4.7.6 Ankle–brachial index and arterial stiffness 4.8 RA-specific CV risk factors in rheumatoid arthritis 4.9 Conventional CV risk algorithms 4.10 Cardiovascular imaging in rheumatoid arthritis 4.10.1 Non-invasive imaging techniques 4.10.2 Invasive imaging techniques: IVUS and OCT 4.11 RA-driven atherosclerotic plaque wall tissue characterization: intelligence paradigm 4.11.1 Machine-learning-based tissue characterization 4.11.2 Deep-learning-based tissue characterization 4.12 Research agenda 4.13 Summary and conclusion Appendix A References CH005.pdf Chapter 5 A deep-learning fully convolutional network for lumen characterization in diabetic patients using carotid ultrasound: a tool for stroke risk 5.1 Introduction 5.2 Data demographics 5.3 Methodology 5.3.1 Pre-processing 5.3.2 The encoder 5.3.3 The decoder 5.4 Results 5.4.1 Experimental protocol 5.4.2 Experimental results 5.4.3 Performance evaluation 5.5 Discussion 5.5.1 Benchmarking 5.5.2 A short note on skip operation in FCN 5.5.3 A short note on manual tracings of LI borders 5.5.4 Strengths and weaknesses 5.6 Conclusion Acknowledgment Appendix A Statistical test results Appendix B Polyline distance metric Appendix C Figure-of-merit and precision-of-merit Appendix D LI-far and LI-near position errors Appendix E Symbol table References CH006.pdf Chapter 6 Deep-learning strategy for accurate carotid intima–media thickness measurement: an ultrasound study on a Japanese diabetic cohort 6.1 Introduction 6.2 Data demographics and US acquisition 6.3 Methodology 6.3.1 Multiresolution as phase I 6.3.2 DL as phase II 6.3.3 Boundary extraction as phase III 6.3.4 Performance evaluation as phase IV 6.4 Experimental protocol and results 6.4.1 Experimental protocol 6.4.2 Results 6.5 Performance of the DL systems and variability analysis 6.5.1 Comparison of DL against expert manual tracing 6.5.2 Comparison of the DL against the sonographer’s readings 6.5.3 Absolute and signed cIMT error analysis for DL1 and DL2 systems 6.5.4 DL versus previous methods 6.5.5 Interoperator variability of the DL systems: DL1 and DL2 6.5.6 Interobserver variability between the GT systems: GT1 and GT2 6.6 Statistical tests and risk analysis 6.6.1 Four statistical tests 6.6.2 Risk analysis by age 6.6.3 Risk stratification and ROC curves 6.7 Discussion 6.7.1 Benchmarking table 6.7.2 A short note on calibration 6.7.3 A special note on DL optimization 6.7.4 A special note on skip operation 6.7.5 Strengths, weaknesses and extensions 6.7.6 Hardware configuration 6.8 Conclusion Acknowledgment Appendix A Polyline distance method Appendix B Encoder and decoder network Appendix C LI/MA position errors, cIMT errors and precision-of-merit Appendix D References CH007.pdf Chapter 7 Echolucency-based phenotype in carotid atherosclerosis disease for risk stratification of diabetes patients 7.1 Introduction 7.2 Patient demographics and methodology 7.2.1 Patients demographics 7.2.2 Methodology 7.3 Results and statistical analysis 7.3.1 CC analysis of AAGSM and GSMconv against HbA1c 7.3.2 CC between left and right CCA for AAGSM and GSMconv 7.3.3 CC analysis of AAGSM–HbA1c and GSMconv–HbA1c in males and females 7.3.4 Risk stratification based on AAGSM, and HbA1c and ROC analysis 7.3.5 Statistical tests 7.4 Discussion 7.4.1 A note on the HbA1c and AAGSM thresholds for risk stratification 7.4.2 Justification of the δth percentile value during GSMδ measurement 7.4.3 A special note on age-adjustment pre-multiplier (M) selection 7.4.4 A note on the therapeutic implications of AAGSM 7.4.5 Benchmarking against the previous literature 7.4.6 Strengths, weaknesses and applications of AAGSM 7.5 Conclusion References CH008.pdf Chapter 8 Morphologic TPA (mTPA) and composite risk score for moderate carotid atherosclerotic plaque is strongly associated with HbA1c in a diabetes cohort 8.1 Introduction 8.2 Materials and methods 8.2.1 Patient demographics 8.2.2 Six phenotype measurements derived from carotid ultrasound scans 8.2.3 Statistical analysis 8.3 Results 8.3.1 Demographics and clinical characteristics of the patients 8.3.2 Visual display of six phenotypes using AtheroEdge™ 8.3.3 Correlation between operators and correlation between cIMT and mTPA for the left, right, and mean of the left and right carotid arteries 8.3.4 Logistic regression for the effect of the six phenotypes on HbA1c for the operator of AtheroEdge™ 8.4 Inter-operator variability and statistical tests 8.4.1 Inter-operator variability 8.4.2 Statistical tests 8.5 Discussion 8.5.1 A special note on mTPA and CRS 8.5.2 Benchmarking 8.5.3 A special note on the reproducibility of phenotypes 8.6 Conclusions Conflict of interest Contributions Financial disclosures Appendix A Box-plots Appendix B Correlation tables Appendix C Statistical tests results Appendix D Abbreviations References CH009.pdf Chapter 9 Plaque tissue morphology-based stroke risk stratification using carotid ultrasound: a polling-based PCA learning paradigm 9.1 Introduction 9.2 Demographics, data collection and preparation 9.2.1 Patient demographics 9.2.2 Data acquisition 9.2.3 Manual wall region extraction for the manual risk assessment system (mRAS) 9.2.4 Modeling the manual LD into two stratification classes: high risk and low risk 9.3 Risk assessment methodology 9.3.1 IMT far and near wall strip extraction 9.3.2 Assessment of stroke risk using a machine-learning system 9.3.3 Texture features 9.3.4 Support vector machine (SVM) and classification 9.3.5 Feature reduction technique using polling-based principal component analysis 9.3.6 Kernel optimization based on the machine-learning paradigm 9.4 Experimental protocol and results 9.4.1 Experiment 1: dominant feature selection and classification accuracy with changing PCA cutoff 9.4.2 Experiment 2: the role of data size in the performance of machine-learning 9.5 Performance evaluation 9.5.1 Precision-of-merit (PoM) analysis 9.5.2 Reliability analysis of the sRAS 9.5.3 Feature retaining power of the sRAS 9.5.4 Stability analysis of the sRAS 9.6 Discussion 9.6.1 About the risk assessment system 9.6.2 Justification for the three kinds of cross-validation protocols 9.6.3 Choice of biomarker (LD versus cIMT) 9.6.4 A note on wall segmentation validation 9.6.5 Benchmarking against the current literature 9.6.6 Summary of our contribution 9.6.7 Strengths, weaknesses and extensions Appendix A Experimental results Appendix B Grayscale features References CH010.pdf Chapter 10 Multiresolution-based coronary calcium volume measurement techniques from intravascular ultrasound videos 10.1 Introduction 10.2 Patient demographics and data acquisition 10.2.1 Patient demographics 10.2.2 IVUS data acquisition 10.2.3 Coronary artery data size preparation 10.2.4 Region-of-interest estimation 10.3 Methodology 10.3.1 Overall system 10.3.2 Five multiresolution techniques 10.3.3 Four segmentation methods 10.4 Results 10.4.1 Calcium detection 10.4.2 Volume measurement 10.4.3 Percentage mean time improvement 10.5 Performance evaluation 10.5.1 Multiresolution error metrics against non-multiresolution technique 10.5.2 The mean Jaccard index (JI) and Dice similarity coefficient (DSC) 10.5.3 Manual scoring of detected calcium by a radiologist 10.5.4 Degradation ratio and quality assessment ratio 10.6 Discussion 10.6.1 Our system 10.6.2 Comparison of our down-sampling methods against other methods 10.6.3 A note on gating and registration 10.6.4 Bias correction 10.6.5 A note on time complexity and precision-of-merit 10.6.6 Benchmarking 10.6.7 Strengths, weaknesses and extensions 10.7 Conclusion Acknowledgments Funding Conflicts of interest Appendix A Tables Appendix B Mean times of 20 combinations References CH011.pdf Chapter 11 A cloud-based smart lumen diameter measurement tool for stroke risk assessment during multicenter clinical trials 11.1 Introduction 11.2 Materials and methods 11.2.1 Manual lumen diameter reading 11.2.2 Workflow architecture of the AtheroCloud ultrasound system 11.2.3 Engineering design of the AtheroCloud ultrasound system 11.2.4 Two application modes of AtheroCloud: routine mode and pharma trial mode 11.3 Results 11.3.1 Measurements and visualization 11.3.2 Performance evaluation of the AtheroCloud ultrasound system 11.3.3 PoM, FoM, CC and Bland–Altman plots 11.3.4 Cumulative frequency distribution of LD error and TLA error 11.3.5 Receiver operating characteristic 11.3.6 Statistical tests 11.4 Discussion 11.4.1 Our system 11.4.2 Benchmarking AtheroCloud against AtheroEdge™ 2.0 11.4.3 Strengths, weaknesses and extensions 11.5 Conclusion Acknowledgments Funding Conflicts of interest Appendix A Precision-of-merit and figure-of-merit for AtheroCloud LD measurements Appendix B Figures References CH012.pdf Chapter 12 A MEMS-based manufacturing technique of vascular bed 12.1 Introduction 12.2 Microstructural anatomy of blood vessels 12.2.1 Arteries and veins 12.2.2 Capillaries 12.3 Modeling of blood vessels as a microsystem 12.3.1 Acoustic wave mechanosensors 12.3.2 Pressure mechanosensors 12.3.3 Microvalves and micropumps 12.4 Scaling laws of miniaturized blood vessels 12.4.1 Scaling in geometry 12.4.2 Scaling in fluid dynamics 12.5 Microfabrication of blood vessels 12.5.1 Soft lithography techniques 12.5.2 Self-assembly techniques 12.5.3 Sputtering techniques 12.6 Microvessel design 12.6.1 Design consideration 12.6.2 Mechanical design of a balloon angioplasty pressure sensor using finite element methods 12.7 Conclusion References