دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1 نویسندگان: Akhtar A. Khan (Editor), Elisabeth Köbis (Editor), Christiane Tammer (Editor) سری: ISBN (شابک) : 9781138037267, 9781351712057 ناشر: CRC Press سال نشر: 2019 تعداد صفحات: 337 زبان: فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 9 مگابایت
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Variational Analysis and Set Optimization-Developments and Applications in Decision Making به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب تجزیه و تحلیل تغییرات و بهینه سازی مجموعه ها-توسعه ها و کاربردها در تصمیم گیری نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب حاوی آخرین پیشرفتها در تحلیل تغییرات و بهینهسازی مجموعه/بردار، از جمله بهینهسازی نامشخص، کنترل بهینه و بهینهسازی دوسطحی است. تحولات اخیر در مورد تکنیک های مقیاس بندی، شرایط بهینه لازم و کافی و گزاره های دوگانگی ارائه شده است. روشهای عددی جدیدی برای حل مؤثر مسائل بهینهسازی مجموعه ارائه شدهاند. علاوه بر این، برنامه های کاربردی در اقتصاد، مالی و نظریه ریسک مورد بحث قرار می گیرد. خلاصه هدف این کتاب ارائه پیشرفتها در زمینههای مختلف تحلیل تغییرات و بهینهسازی مجموعهها، به ویژه بهینهسازی نامشخص، کنترل بهینه و بهینهسازی دوسطحی است. مسائل بهینه سازی نامطمئن هم از منظر تصادفی و هم از نقطه نظر قوی مورد بررسی قرار خواهند گرفت. این منجر به تفاسیر متفاوتی از راهحلها میشود که انتخابهای یک تصمیمگیرنده را با توجه به اولویتهایش گستردهتر میکند. تحولات اخیر در مورد تکنیک های مقیاس بندی خطی و غیرخطی با مخروط های مرتب و غیر جامد برای حل مسائل بهینه سازی مجموعه در این کتاب مورد بحث قرار گرفته است. این نتایج برای استخراج شرایط بهینه برای مسائل بهینه سازی مجموعه و برداری مفید است. در نتیجه، شرایط بهینه لازم و کافی در این کتاب، هم از نظر مقیاس بندی و هم از نظر مشتقات تعمیم یافته ارائه شده است. علاوه بر این، یک مرور کلی از اظهارات دوگانگی موجود و ادعاهای دوگانگی جدید ارائه شده است. این کتاب همچنین به حوزه ساختارهای سلطه متغیر در بهینه سازی برداری و مجموعه می پردازد. گنجاندن مخروط های سفارش متغیر به ویژه در برنامه هایی مانند ثبت تصویر پزشکی با عدم قطعیت مهم است. این کتاب طیف گسترده ای از کاربردهای بهینه سازی مجموعه را پوشش می دهد. اینها از امور مالی، سرمایه گذاری، بیمه، تئوری کنترل، اقتصاد تا نظریه ریسک را شامل می شود. از آنجایی که بهینه سازی چندهدفه نامشخص، به ویژه رویکردهای قوی، منجر به بهینه سازی مجموعه می شود، یکی از تمرکز اصلی این کتاب بهینه سازی نامطمئن است. پیشرفت های مهم اخیر در مورد روش های عددی برای حل مسائل بهینه سازی مجموعه با سرعت کافی از ویژگی های اصلی این کتاب است. اینها با مثالهای مختلف و همچنین مراحل آسان برای تسهیل فرآیند تصمیمگیری برای کاربران نشان داده شدهاند. تکنیکهای ساده با هدف تمرینکنندگانی که در زمینههای برنامهنویسی ریاضی، امور مالی و انتخاب نمونه کارها کار میکنند، ارائه شدهاند. اینها به فرآیند تصمیمگیری کمک میکنند، و همچنین مروری بر راهحلهای غیرمسلط برای انتخاب ارائه میدهند. ترجیحات تحولات اخیر در مورد تکنیک های مقیاس بندی خطی و غیرخطی با مخروط های مرتب و غیر جامد برای حل مسائل بهینه سازی مجموعه در این کتاب مورد بحث قرار گرفته است. این نتایج برای استخراج شرایط بهینه برای مسائل بهینه سازی مجموعه و برداری مفید است. در نتیجه، شرایط بهینه لازم و کافی در این کتاب، هم از نظر مقیاس بندی و هم از نظر مشتقات تعمیم یافته ارائه شده است. علاوه بر این، یک مرور کلی از اظهارات دوگانگی موجود و ادعاهای دوگانگی جدید ارائه شده است. این کتاب همچنین به حوزه ساختارهای سلطه متغیر در بهینه سازی برداری و مجموعه می پردازد. گنجاندن مخروط های سفارش متغیر به ویژه در برنامه هایی مانند ثبت تصویر پزشکی با عدم قطعیت مهم است. این کتاب طیف گسترده ای از کاربردهای بهینه سازی مجموعه را پوشش می دهد. اینها از امور مالی، سرمایه گذاری، بیمه، تئوری کنترل، اقتصاد تا نظریه ریسک را شامل می شود. از آنجایی که بهینه سازی چندهدفه نامشخص، به ویژه رویکردهای قوی، منجر به بهینه سازی مجموعه می شود، یکی از تمرکز اصلی این کتاب بهینه سازی نامطمئن است. پیشرفت های مهم اخیر در مورد روش های عددی برای حل مسائل بهینه سازی مجموعه با سرعت کافی از ویژگی های اصلی این کتاب است. اینها با مثالهای مختلف و همچنین مراحل آسان برای تسهیل فرآیند تصمیمگیری برای کاربران نشان داده شدهاند. تکنیکهای ساده با هدف تمرینکنندگانی که در زمینههای برنامهنویسی ریاضی، امور مالی و انتخاب نمونه کارها کار میکنند، ارائه شدهاند. اینها به فرآیند تصمیمگیری کمک میکنند، و همچنین مروری بر راهحلهای غیرمسلط برای انتخاب ارائه میدهند. رام مالی، سرمایه گذاری، بیمه، تئوری کنترل، اقتصاد تا نظریه ریسک. از آنجایی که بهینه سازی چندهدفه نامشخص، به ویژه رویکردهای قوی، منجر به بهینه سازی مجموعه می شود، یکی از تمرکز اصلی این کتاب بهینه سازی نامطمئن است. پیشرفت های مهم اخیر در مورد روش های عددی برای حل مسائل بهینه سازی مجموعه با سرعت کافی از ویژگی های اصلی این کتاب است. اینها با مثالهای مختلف و همچنین مراحل آسان برای تسهیل فرآیند تصمیمگیری برای کاربران نشان داده شدهاند. تکنیکهای ساده با هدف تمرینکنندگانی که در زمینههای برنامهنویسی ریاضی، امور مالی و انتخاب نمونه کارها کار میکنند، ارائه شدهاند. اینها به فرآیند تصمیمگیری کمک میکنند، و همچنین مروری بر راهحلهای غیرمسلط برای انتخاب ارائه میدهند.
This book contains the latest advances in variational analysis and set / vector optimization, including uncertain optimization, optimal control and bilevel optimization. Recent developments concerning scalarization techniques, necessary and sufficient optimality conditions and duality statements are given. New numerical methods for efficiently solving set optimization problems are provided. Moreover, applications in economics, finance and risk theory are discussed. Summary The objective of this book is to present advances in different areas of variational analysis and set optimization, especially uncertain optimization, optimal control and bilevel optimization. Uncertain optimization problems will be approached from both a stochastic as well as a robust point of view. This leads to different interpretations of the solutions, which widens the choices for a decision-maker given his preferences. Recent developments regarding linear and nonlinear scalarization techniques with solid and nonsolid ordering cones for solving set optimization problems are discussed in this book. These results are useful for deriving optimality conditions for set and vector optimization problems. Consequently, necessary and sufficient optimality conditions are presented within this book, both in terms of scalarization as well as generalized derivatives. Moreover, an overview of existing duality statements and new duality assertions is given. The book also addresses the field of variable domination structures in vector and set optimization. Including variable ordering cones is especially important in applications such as medical image registration with uncertainties. This book covers a wide range of applications of set optimization. These range from finance, investment, insurance, control theory, economics to risk theory. As uncertain multi-objective optimization, especially robust approaches, lead to set optimization, one main focus of this book is uncertain optimization. Important recent developments concerning numerical methods for solving set optimization problems sufficiently fast are main features of this book. These are illustrated by various examples as well as easy-to-follow-steps in order to facilitate the decision process for users. Simple techniques aimed at practitioners working in the fields of mathematical programming, finance and portfolio selection are presented. These will help in the decision-making process, as well as give an overview of nondominated solutions to choose from. s preferences. Recent developments regarding linear and nonlinear scalarization techniques with solid and nonsolid ordering cones for solving set optimization problems are discussed in this book. These results are useful for deriving optimality conditions for set and vector optimization problems. Consequently, necessary and sufficient optimality conditions are presented within this book, both in terms of scalarization as well as generalized derivatives. Moreover, an overview of existing duality statements and new duality assertions is given. The book also addresses the field of variable domination structures in vector and set optimization. Including variable ordering cones is especially important in applications such as medical image registration with uncertainties. This book covers a wide range of applications of set optimization. These range from finance, investment, insurance, control theory, economics to risk theory. As uncertain multi-objective optimization, especially robust approaches, lead to set optimization, one main focus of this book is uncertain optimization. Important recent developments concerning numerical methods for solving set optimization problems sufficiently fast are main features of this book. These are illustrated by various examples as well as easy-to-follow-steps in order to facilitate the decision process for users. Simple techniques aimed at practitioners working in the fields of mathematical programming, finance and portfolio selection are presented. These will help in the decision-making process, as well as give an overview of nondominated solutions to choose from. rom finance, investment, insurance, control theory, economics to risk theory. As uncertain multi-objective optimization, especially robust approaches, lead to set optimization, one main focus of this book is uncertain optimization. Important recent developments concerning numerical methods for solving set optimization problems sufficiently fast are main features of this book. These are illustrated by various examples as well as easy-to-follow-steps in order to facilitate the decision process for users. Simple techniques aimed at practitioners working in the fields of mathematical programming, finance and portfolio selection are presented. These will help in the decision-making process, as well as give an overview of nondominated solutions to choose from.
Preface
Variational Analysis and Variational Rationality in Behavioral Sciences
Boris S. Mordukhovich and Antoine Soubeyran
Introduction
Variational Rationality in Behavioral Sciences
Evaluation Aspects of Variational Rationality
Exact Stationary Traps in Behavioral Dynamics
Evaluations of Approximate Stationary Traps
Geometric Evaluations and Extremal Principle
Summary of Major Finding and Future Research
References
A Financial Model for a Multi-Period Portfolio Optimization Problem
Gabriella Colajanni and Patrizia Daniele
Introduction
The Financial Model
Variational Inequality Formulation and Existence Results
Numerical Examples
Conclusions
References
A Generalized Proximal Alternating Linearized Method
Antoine Soubeyran, Jo˜ao Carlos Souza, and Jo˜ao Xavier Cruz Neto
Introduction
Potential Games: How to Play Nash?
Variational Analysis: How to Optimize a Potential Function?
Variational Rationality: How Human Dynamics Work?
Computing How to Play Nash for Potential Games
References
Sublinear-like Scalarization Scheme for Sets and its Applications
Koichiro Ike, Yuto Ogata, Tamaki Tanaka, and Hui Yu
Introduction
Set Relations and Scalarizing Functions for Sets
Inherited Properties of Scalarizing Functions
Applications to Set-valued Inequality and Fuzzy Theory
References
Functions with Uniform Sublevel Sets, Epigraphs and Continuity
Petra Weidner
Introduction
Preliminaries
Directional Closedness of Sets
Definition of Functions with Uniform Sublevel Sets
Translative Functions
Nontranslative Functions with Uniform Sublevel Sets
Extension of Arbitrary Functionals to Translative Functions
References
Optimality and Viability Conditions for State-Constrained Control Problems
Robert Kipka
Introduction
Background
Strict Normality and the Decrease Condition
Metric Regularity, Viability, and the Maximum Principle
Closing Remarks
References
Lipschitz Properties of Cone-convex Set-valued Functions
Vu Anh Tuan and Thanh Tam Le
Introduction
Preliminaries
Concepts on Convexity and Lipschitzianity of Set-valued Functions
Lipschitz Properties of Cone-convex Set-valued Functions
Conclusions
References
Vector Optimization with Variable Ordering Structures
Marius Durea, Elena-Andreea Florea, and Radu Strugariu
Introduction
Preliminaries
Efficiency Concepts
Sufficient Conditions for Mixed Openness
Necessary Optimality Conditions
Bibliographic Notes, Comments, and Conclusions
References
Vectorial Penalization in Multi-objective Optimization
Christian G¨unther
Introduction
Preliminaries in Generalized Convex Multi-objective Optimization
Pareto Efficiency with Respect to Different Constraint Sets
A Vectorial Penalization Approach in Multi-objective Optimization
Penalization in Multi-objective Optimization with Functional
Conclusions
References
Set Optimization Problems Reducible to Vector Optimization Problems
Gabriele Eichfelder and Tobias Gerlach
Introduction
Basics of Vector and Set Optimization
Set Optimization Problems Being Reducible to Vector Optimization Problems
Implication on Set-valued Test Instances
References
Abstract Convexity and Solvability Theorems
Ali Reza Doagooei
Introduction
Abstract Convex Functions
Solvability Theorems for Real-valued Systems of Inequalities
Vector-valued Abstract Convex Functions and Solvability Theorems
Applications in Optimization
References
Regularization Methods for Scalar and Vector Control Problems
Baasansuren Jadamba, Akhtar A. Khan, Miguel Sama, and Christiane Tammer
Introduction
Lavrentiev Regularization
Conical Regularization
Half-space Regularization
Integral Constraint Regularization
A Constructible Dilating Regularization
Regularization of Vector Optimization Problems
Concluding Remarks and Future Research
References